Skip to content

🌸 Iris Flower Classification | SVM and Neural Network Models | Grid Search Hyperparameter Tuning | TensorFlow | Machine Learning | Python

Notifications You must be signed in to change notification settings

AtharvMalusare/IrisClassification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 

Repository files navigation

Iris Flower Classification

This project classifies the famous Iris flower dataset using two models:

  1. Support Vector Machine (SVM) with Radial Basis Function (RBF) kernel and GridSearchCV for hyperparameter tuning.
  2. Neural Network implemented with TensorFlow/Keras.

Table of Contents

Project Overview

The Iris dataset contains 150 samples of Iris flowers with 4 features:

  • Sepal Length
  • Sepal Width
  • Petal Length
  • Petal Width

The goal of this project is to classify these flowers into three species:

  • Iris Setosa
  • Iris Versicolor
  • Iris Virginica

Dataset

The dataset consists of 150 samples and 5 columns:

  • SepalLengthCm, SepalWidthCm, PetalLengthCm, PetalWidthCm: Features of the flowers.
  • Species: The target label (Iris-setosa, Iris-versicolor, Iris-virginica).

Models Used

1. Support Vector Machine (SVM)

  • Kernel: Radial Basis Function (RBF)
  • Hyperparameter Tuning: Grid Search with cross-validation using C and gamma values.
  • Achieved an accuracy of 100% on the test data.

2. Neural Network

  • A simple Sequential model built with TensorFlow/Keras.
  • Architecture:
    • Input Layer: 64 neurons, ReLU activation
    • Hidden Layer: 32 neurons, ReLU activation
    • Output Layer: 3 neurons (one for each class), softmax activation.
  • Achieved high accuracy after training with 60 epochs.

Installation

To run this project locally, clone the repository and install the dependencies:

git clone https://github.com/Sudo_User/iris-flower-classification.git
cd iris-flower-classification
pip install -r requirements.txt

About

🌸 Iris Flower Classification | SVM and Neural Network Models | Grid Search Hyperparameter Tuning | TensorFlow | Machine Learning | Python

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published