This project classifies the famous Iris flower dataset using two models:
- Support Vector Machine (SVM) with Radial Basis Function (RBF) kernel and GridSearchCV for hyperparameter tuning.
- Neural Network implemented with TensorFlow/Keras.
The Iris dataset contains 150 samples of Iris flowers with 4 features:
- Sepal Length
- Sepal Width
- Petal Length
- Petal Width
The goal of this project is to classify these flowers into three species:
- Iris Setosa
- Iris Versicolor
- Iris Virginica
The dataset consists of 150 samples and 5 columns:
SepalLengthCm
,SepalWidthCm
,PetalLengthCm
,PetalWidthCm
: Features of the flowers.Species
: The target label (Iris-setosa, Iris-versicolor, Iris-virginica).
- Kernel: Radial Basis Function (RBF)
- Hyperparameter Tuning: Grid Search with cross-validation using
C
andgamma
values. - Achieved an accuracy of 100% on the test data.
- A simple Sequential model built with TensorFlow/Keras.
- Architecture:
- Input Layer: 64 neurons, ReLU activation
- Hidden Layer: 32 neurons, ReLU activation
- Output Layer: 3 neurons (one for each class), softmax activation.
- Achieved high accuracy after training with 60 epochs.
To run this project locally, clone the repository and install the dependencies:
git clone https://github.com/Sudo_User/iris-flower-classification.git
cd iris-flower-classification
pip install -r requirements.txt