Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Drop dependency on EulerProducts #225

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
77 changes: 77 additions & 0 deletions PrimeNumberTheoremAnd/Auxiliary.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
/-
Copyright (c) 2024 Michael Stoll. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Michael Stoll
-/
import Mathlib.Analysis.Complex.Positivity

/-!
### Auxiliary lemmas
-/

namespace Complex
-- see https://leanprover.zulipchat.com/#narrow/stream/217875-Is-there-code-for-X.3F/topic/Differentiability.20of.20the.20natural.20map.20.E2.84.9D.20.E2.86.92.20.E2.84.82/near/418095234

lemma hasDerivAt_ofReal (x : ℝ) : HasDerivAt ofReal 1 x :=
HasDerivAt.ofReal_comp <| hasDerivAt_id x

lemma deriv_ofReal (x : ℝ) : deriv ofReal x = 1 :=
(hasDerivAt_ofReal x).deriv

lemma differentiableAt_ofReal (x : ℝ) : DifferentiableAt ℝ ofReal x :=
(hasDerivAt_ofReal x).differentiableAt

lemma differentiable_ofReal : Differentiable ℝ ofReal :=
ofRealCLM.differentiable

end Complex

lemma DifferentiableAt.comp_ofReal {e : ℂ → ℂ} {z : ℝ} (hf : DifferentiableAt ℂ e z) :
DifferentiableAt ℝ (fun x : ℝ ↦ e x) z :=
hf.hasDerivAt.comp_ofReal.differentiableAt

lemma deriv.comp_ofReal {e : ℂ → ℂ} {z : ℝ} (hf : DifferentiableAt ℂ e z) :
deriv (fun x : ℝ ↦ e x) z = deriv e z :=
hf.hasDerivAt.comp_ofReal.deriv

lemma Differentiable.comp_ofReal {e : ℂ → ℂ} (h : Differentiable ℂ e) :
Differentiable ℝ (fun x : ℝ ↦ e x) :=
fun _ ↦ h.differentiableAt.comp_ofReal

lemma DifferentiableAt.ofReal_comp {z : ℝ} {f : ℝ → ℝ} (hf : DifferentiableAt ℝ f z) :
DifferentiableAt ℝ (fun (y : ℝ) ↦ (f y : ℂ)) z :=
hf.hasDerivAt.ofReal_comp.differentiableAt

lemma Differentiable.ofReal_comp {f : ℝ → ℝ} (hf : Differentiable ℝ f) :
Differentiable ℝ (fun (y : ℝ) ↦ (f y : ℂ)) :=
fun _ ↦ hf.differentiableAt.ofReal_comp

open Complex ContinuousLinearMap in
lemma HasDerivAt.of_hasDerivAt_ofReal_comp {z : ℝ} {f : ℝ → ℝ} {u : ℂ}
(hf : HasDerivAt (fun y ↦ (f y : ℂ)) u z) :
∃ u' : ℝ, u = u' ∧ HasDerivAt f u' z := by
lift u to ℝ
· have H := (imCLM.hasFDerivAt.comp z hf.hasFDerivAt).hasDerivAt.deriv
simp only [Function.comp_def, imCLM_apply, ofReal_im, deriv_const] at H
rwa [eq_comm, comp_apply, imCLM_apply, smulRight_apply, one_apply, one_smul] at H
refine ⟨u, rfl, ?_⟩
convert (reCLM.hasFDerivAt.comp z hf.hasFDerivAt).hasDerivAt
rw [comp_apply, smulRight_apply, one_apply, one_smul, reCLM_apply, ofReal_re]

lemma DifferentiableAt.ofReal_comp_iff {z : ℝ} {f : ℝ → ℝ} :
DifferentiableAt ℝ (fun (y : ℝ) ↦ (f y : ℂ)) z ↔ DifferentiableAt ℝ f z := by
refine ⟨fun H ↦ ?_, ofReal_comp⟩
obtain ⟨u, _, hu₂⟩ := H.hasDerivAt.of_hasDerivAt_ofReal_comp
exact HasDerivAt.differentiableAt hu₂

lemma Differentiable.ofReal_comp_iff {f : ℝ → ℝ} :
Differentiable ℝ (fun (y : ℝ) ↦ (f y : ℂ)) ↔ Differentiable ℝ f :=
forall_congr' fun _ ↦ DifferentiableAt.ofReal_comp_iff

lemma deriv.ofReal_comp {z : ℝ} {f : ℝ → ℝ} :
deriv (fun (y : ℝ) ↦ (f y : ℂ)) z = deriv f z := by
by_cases hf : DifferentiableAt ℝ f z
· exact hf.hasDerivAt.ofReal_comp.deriv
· have hf' := mt DifferentiableAt.ofReal_comp_iff.mp hf
rw [deriv_zero_of_not_differentiableAt hf, deriv_zero_of_not_differentiableAt hf',
Complex.ofReal_zero]
2 changes: 1 addition & 1 deletion PrimeNumberTheoremAnd/MellinCalculus.lean
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
import EulerProducts.Auxiliary
import PrimeNumberTheoremAnd.Auxiliary
import Mathlib.Analysis.MellinInversion
import PrimeNumberTheoremAnd.PerronFormula
import Mathlib.Algebra.GroupWithZero.Units.Basic
Expand Down
10 changes: 0 additions & 10 deletions lake-manifest.json
Original file line number Diff line number Diff line change
Expand Up @@ -11,16 +11,6 @@
"inputRev": "v4.14.0",
"inherited": false,
"configFile": "lakefile.lean"},
{"url": "https://github.com/MichaelStollBayreuth/EulerProducts.git",
"type": "git",
"subDir": null,
"scope": "",
"rev": "28f8a06a85b742a0233bd74d5e0dd1fec42cc320",
"name": "EulerProducts",
"manifestFile": "lake-manifest.json",
"inputRev": "28f8a06a",
"inherited": false,
"configFile": "lakefile.lean"},
{"url": "https://github.com/leanprover-community/mathlib4.git",
"type": "git",
"subDir": null,
Expand Down
3 changes: 0 additions & 3 deletions lakefile.lean
Original file line number Diff line number Diff line change
Expand Up @@ -20,8 +20,5 @@ lean_lib «PrimeNumberTheoremAnd»
require mathlib from git
"https://github.com/leanprover-community/mathlib4.git" @ "v4.14.0"

require EulerProducts from git
"https://github.com/MichaelStollBayreuth/EulerProducts.git" @ "28f8a06a"

meta if get_config? env = some "dev" then require «doc-gen4» from git
"https://github.com/leanprover/doc-gen4.git" @ "v4.14.0"