Skip to content

Commit

Permalink
Merge pull request #222 from AlexKontorovich/fix-leanoks
Browse files Browse the repository at this point in the history
Fix-leanoks
  • Loading branch information
AlexKontorovich authored Feb 2, 2025
2 parents 859d7c7 + ecc803f commit 0e406e9
Showing 1 changed file with 59 additions and 3 deletions.
62 changes: 59 additions & 3 deletions PrimeNumberTheoremAnd/Wiener.lean
Original file line number Diff line number Diff line change
Expand Up @@ -2312,7 +2312,7 @@ theorem WienerIkeharaTheorem'' (hpos : 0 ≤ f) (hf : ∀ (σ' : ℝ), 1 < σ'

/-%%
\begin{proof}
\uses{auto-cheby, WienerIkehara} Use Corollary \ref{auto-cheby} to remove the Chebyshev hypothesis in Theorem \ref{WienerIkehara}.
\uses{auto-cheby, WienerIkehara}\leanok Use Corollary \ref{auto-cheby} to remove the Chebyshev hypothesis in Theorem \ref{WienerIkehara}.
\end{proof}
%%-/

Expand All @@ -2321,7 +2321,7 @@ end auto_cheby
/-%%
\section{The prime number theorem in arithmetic progressions}
\begin{lemma}[Character decomposition]\label{WeakPNT-character}\lean{WeakPNT_character'} If $q ≥ 1$ and $a$ is coprime to $q$, and $\mathrm{Re} s > 1$, we have
\begin{lemma}[Character decomposition]\label{WeakPNT-character}\lean{WeakPNT_character'}\leanok If $q ≥ 1$ and $a$ is coprime to $q$, and $\mathrm{Re} s > 1$, we have
$$
\sum_{n: n = a\ (q)} \frac{\Lambda(n)}{n^s} = - \frac{1}{\varphi(q)} \sum_{\chi\ (q)} \overline{\chi(a)} \frac{L'(s,\chi)}{L(s,\chi)}.$$
\end{lemma}
Expand Down Expand Up @@ -2349,7 +2349,7 @@ theorem WeakPNT_character'
← ZMod.coe_unitOfCoprime a ha, ZMod.inv_coe_unit, map_units_inv]

/-%%
\begin{proof} From the Fourier inversion formula on the multiplicative group $(\Z/q\Z)^\times$, we have
\begin{proof}\leanok From the Fourier inversion formula on the multiplicative group $(\Z/q\Z)^\times$, we have
$$ 1_{n=a\ (q)} = \frac{\varphi(q)}{q} \sum_{\chi\ (q)} \overline{\chi(a)} \chi(n).$$
On the other hand, from standard facts about L-series we have for each character $\chi$ that
$$
Expand Down Expand Up @@ -2397,3 +2397,59 @@ Apply Theorem \ref{WienerIkehara} (or Theorem \ref{WienerIkehara-alt}) to Propos
\end{proof}
%%-/

/-%%
\section{The Chebotarev density theorem: the case of cyclotomic extensions}
In this section, $K$ is a number field, $L = K(\mu_m)$ for some natural number $m$, and $G = Gal(K/L)$.
The goal here is to prove the Chebotarev density theorem for the case of cyclotomic extensions.
%%-/

/-%%
\begin{lemma}[Factorization of Dedekind zeta function]\label{Dedekind-factor} We have
$$ \zeta_L(s) = \prod_{\chi} L(\chi,s)$$
for $\Re(s) > 1$, where $\chi$ runs over homomorphisms from $G$ to $\C^\times$ and $L$ is the Artin $L$-function.
\end{lemma}
%%-/

/-%%
\begin{proof} See Propositions 7.1.16, 7.1.19 of https://www.math.ucla.edu/~sharifi/algnum.pdf .
\end{proof}
%%-/

/-%%
\begin{lemma}[Simple pole]\label{Dedekind-pole} $\zeta_L$ has a simple pole at $s=1$.
\end{lemma}
%%-/

/-%%
\begin{proof} See Theorem 7.1.12 of https://www.math.ucla.edu/~sharifi/algnum.pdf .
\end{proof}
%%-/

/-%%
\begin{lemma}[Nonvanishing]\label{Dedekind-nonvanishing} For any non-principal character $\chi$ of $Gal(K/L)$, $L(\chi,s)$ does not vanish for $\Re(s)=1$.
\end{lemma}
%%-/

/-%%
\begin{proof}\uses{Dedekind-factor, Dedekind-pole} For $s=1$, this will follow from Lemmas \ref{Dedekind-factor}, \ref{Dedekind-pole}. For the rest of the line, one should be able to adapt the arguments for the Dirichet L-function.
\end{proof}
%%-/

/-%%
\section{The Chebotarev density theorem: the case of abelian extensions}
(Use the arguments in Theorem 7.2.2 of https://www.math.ucla.edu/~sharifi/algnum.pdf to extend the previous results to abelian extensions (actually just cyclic extensions would suffice))
%%-/

/-%%
\section{The Chebotarev density theorem: the general case}
(Use the arguments in Theorem 7.2.2 of https://www.math.ucla.edu/~sharifi/algnum.pdf to extend the previous results to arbitrary extensions
%%-/

0 comments on commit 0e406e9

Please sign in to comment.