Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions autoencoder.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,8 +51,8 @@ def __init__(self, num_features, verbose=True, mse_threshold = 0.5, archi="U15,D


def accuracy(self, y_true, y_pred):
mse = K.mean(K.square((y_true - y_pred)), axis = 1)
temp = K.ones(K.shape(mse))
mse = K.mean(K.square((y_true - y_pred)), axis=1)
temp = K.ones_like(mse) # Resolve out-of-scope error
return K.mean(K.equal(temp, K.cast(mse < self.mse_threshold, temp.dtype)))

def loss(self, y_true,y_pred):
Expand Down
2 changes: 1 addition & 1 deletion helper.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ def dataframe_drop_correlated_columns(df, threshold=0.95, verbose=False):
corr_matrix = df.corr().abs()

# Select upper triangle of correlation matrix
upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool))
upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool)) # Depracated np.bool, change to bool

# Find index of feature columns with correlation greater than 0.95
to_drop = [column for column in upper.columns if any(upper[column] > threshold)]
Expand Down
11 changes: 9 additions & 2 deletions main.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,10 @@ def evaluate(model, valid_X, attack_path, output_file):
label_encoder_1 = preprocessing.LabelEncoder()
label_encoder_2 = preprocessing.LabelEncoder()
label_encoder_3 = preprocessing.LabelEncoder()
one_hot_encoder = preprocessing.OneHotEncoder(categorical_features = [1,2,3])
# one_hot_encoder = preprocessing.OneHotEncoder(categorical_features = [1,2,3])




def read_kdd_dataset(path):
global label_encoder_1, label_encoder_2, label_encoder_3, one_hot_encoder
Expand All @@ -59,7 +62,11 @@ def read_kdd_dataset(path):
dataset[:, 1] = label_encoder_1.fit_transform(dataset[:, 1])
dataset[:, 2] = label_encoder_2.fit_transform(dataset[:, 2])
dataset[:, 3] = label_encoder_3.fit_transform(dataset[:, 3])
dataset_features = one_hot_encoder.fit_transform(dataset[:, :-2]).toarray()
# dataset_features = one_hot_encoder.fit_transform(dataset[:, :-2]).toarray()
categorical_cols = [1, 2, 3] # Specify the categorical columns here
# Ensure categorical columns are properly encoded using OneHotEncoder
one_hot_encoder = preprocessing.OneHotEncoder(categories='auto', sparse=False, handle_unknown='ignore')
one_hot_encoded_cols = one_hot_encoder.fit_transform(dataset[:, categorical_cols])
else:
dataset[:, 1] = label_encoder_1.transform(dataset[:, 1])
dataset[:, 2] = label_encoder_2.transform(dataset[:, 2])
Expand Down