@@ -49,7 +49,7 @@ AX-Samples 将不断更新最流行的、实用的、有趣的示例代码。
49
49
登录 AX620A 开发板,在 ` root ` 路径下创建 ` samples ` 文件夹。
50
50
51
51
- 将 [ 快速编译] ( ../docs/compile.md ) 中编译生成的可执行示例拷贝到 ` /root/samples/ ` 路径下;
52
- - 将 ** [ ModelZoo] ( https://pan.baidu.com/s/1zm2M-vqiss4Rmk-uSoGO7w ) ** ( * pwd: euy7 * ) 中相应的 ** joint** 模型 ` mobilenetv2.joint ` 、 ` yolov5s.joint ` 拷贝到 ` /root/samples/ ` 路径下;
52
+ - 将 ** [ ModelZoo] ( https://pan.baidu.com/s/1ZHW2P6Y3lPf2odmj3fo8hA?pwd=sow9 ) ** 中相应的 ** joint** 模型 ` mobilenetv2.joint ` 、 ` yolov5s.joint ` 拷贝到 ` /root/samples/ ` 路径下;
53
53
- 将测试图片拷贝到 ` /root/samples ` 路径下。
54
54
55
55
```
@@ -86,39 +86,64 @@ Tools version: 0.6.0.32
86
86
--------------------------------------
87
87
Create handle took 201.32 ms (neu 6.36 ms, axe 0.00 ms, overhead 194.96 ms)
88
88
--------------------------------------
89
- Repeat 10 times, avg time 4.20 ms, max_time 4.67 ms, min_time 4.14 ms
89
+ Repeat 10 times, avg time 3.43 ms, max_time 3.75 ms, min_time 3.37 ms
90
90
```
91
91
92
92
- 物体检测:YOLOv5s
93
93
94
94
```
95
- / root/samples # ./ax_yolov5s -m yolov5s.joint -i dog .jpg -r 10
95
+ root@AXERA:~ /samples# ./ax_yolov5s -m yolov5s.joint -i ssd_dog .jpg -r 10
96
96
--------------------------------------
97
- model file : yolov5s.joint
98
- image file : dog .jpg
97
+ model file : models/ yolov5s.joint
98
+ image file : images/ssd_dog .jpg
99
99
img_h, img_w : 640 640
100
- Run-Joint Runtime version: 0.5.8
100
+ Run-Joint Runtime version: 0.5.10
101
101
--------------------------------------
102
102
[INFO]: Virtual npu mode is 1_1
103
103
104
- Tools version: 0.6.0.32
105
- 8a011dfa
104
+ Tools version: d696ee2f
106
105
run over: output len 3
107
- post process cost time:5.52 ms
108
106
--------------------------------------
109
- Create handle took 396.61 ms (neu 18.13 ms, axe 0.00 ms, overhead 378.48 ms)
107
+ Create handle took 488.94 ms (neu 22.83 ms, axe 0.00 ms, overhead 466.11 ms)
110
108
--------------------------------------
111
- Repeat 10 times, avg time 26.59 ms, max_time 27.18 ms, min_time 26.51 ms
109
+ Repeat 10 times, avg time 22.54 ms, max_time 22.91 ms, min_time 22.47 ms
112
110
--------------------------------------
113
111
detection num: 3
114
- 16: 92%, [ 133, 219, 312, 543], dog
115
- 2: 81%, [ 470, 77, 692, 170], car
116
- 1: 60%, [ 169, 120, 565, 417], bicycle
112
+ 16: 92%, [ 133, 221, 312, 541], dog
113
+ 2: 77%, [ 468, 76, 692, 171], car
114
+ 1: 65%, [ 167, 120, 564, 417], bicycle
115
+ ```
116
+ ![ YOLOv5s] ( ../docs/yolov5s.jpg )
117
+
118
+ - 物体检测:YOLOv7-Tiny
117
119
```
120
+ root@AXERA:~/samples# ./ax_yolov7 -m yolov7-tiny.joint -i ssd_dog.jpg -r 10
121
+ --------------------------------------
122
+ model file : yolov7-tiny-cut-sim-sigmoid-dfs.joint
123
+ image file : images/ssd_dog.jpg
124
+ img_h, img_w : 416 416
125
+ Run-Joint Runtime version: 0.5.10
126
+ --------------------------------------
127
+ [INFO]: Virtual npu mode is 1_1
128
+
129
+ Tools version: 0.6.1.4
130
+ 59588c54
131
+ run over: output len 3
132
+ --------------------------------------
133
+ Create handle took 376.32 ms (neu 15.51 ms, axe 0.00 ms, overhead 360.81 ms)
134
+ --------------------------------------
135
+ Repeat 10 times, avg time 9.68 ms, max_time 10.01 ms, min_time 9.63 ms
136
+ --------------------------------------
137
+ detection num: 3
138
+ 16: 88%, [ 133, 221, 316, 543], dog
139
+ 1: 86%, [ 139, 130, 571, 422], bicycle
140
+ 2: 63%, [ 468, 76, 691, 169], car
141
+ ```
142
+ ![ YOLOv7-Tiny] ( ../docs/yolov7-tiny.jpg )
118
143
119
144
- 物体检测:YOLOX-S
120
145
```
121
- /tmp/qtang # ./ax_yoloxs -m yolox_s_cut.joint -i dog.jpg -r 10
146
+ /tmp/samples # ./ax_yoloxs -m yolox_s_cut.joint -i dog.jpg -r 10
122
147
--------------------------------------
123
148
model file : yolox_s_cut.joint
124
149
image file : dog.jpg
@@ -142,6 +167,73 @@ detection num: 4
142
167
58: 53%, [ 685, 111, 716, 154], potted plant
143
168
```
144
169
170
+ - 人脸检测:Scrfd
171
+ ```
172
+ root@AXERA:~/samples# ./ax_scrfd -m scrfd_500m_bnkps_shape640x640.joint -i selfie.jpg -r 10
173
+ --------------------------------------
174
+ model file : models/scrfd_500m_bnkps_shape640x640.joint
175
+ image file : images/selfie.jpg
176
+ img_h, img_w : 640 640
177
+ Run-Joint Runtime version: 0.5.10
178
+ --------------------------------------
179
+ [INFO]: Virtual npu mode is 1_1
180
+
181
+ Tools version: 0.6.0.34
182
+ 9c2b134d
183
+ run over: output len 9
184
+ --------------------------------------
185
+ Create handle took 68.89 ms (neu 4.43 ms, axe 0.00 ms, overhead 64.46 ms)
186
+ --------------------------------------
187
+ Repeat 10 times, avg time 5.76 ms, max_time 6.09 ms, min_time 5.71 ms
188
+ --------------------------------------
189
+ detection num: 111
190
+ ```
191
+ ![ Scrfd] ( ../docs/scrfd.jpg )
192
+
193
+ - 3D单目车辆检测:Monodlex
194
+ ```
195
+ root@AXERA:~/samples# ./ax_monodlex -m monodlex_sigmoid_max.joint -i cityscape.png -r 10
196
+ --------------------------------------
197
+ model file : models/monodlex_sigmoid_max.joint
198
+ image file : images/cityscape.png
199
+ img_h, img_w : 384 1280
200
+ Run-Joint Runtime version: 0.5.10
201
+ --------------------------------------
202
+ [INFO]: Virtual npu mode is 1_1
203
+
204
+ Tools version: Unknown
205
+ run over: output len 8
206
+ --------------------------------------
207
+ Create handle took 628.84 ms (neu 29.80 ms, axe 0.00 ms, overhead 599.03 ms)
208
+ --------------------------------------
209
+ Repeat 10 times, avg time 111.77 ms, max_time 112.34 ms, min_time 111.66 ms
210
+ --------------------------------------
211
+ detection num: 7
212
+ ```
213
+ ![ Monodlex] ( ../docs/monodlex.png )
214
+
215
+ - 人体关键点:HRNet
216
+ ```
217
+ root@AXERA:~/samples# ./ax_hrnet -m hrnet_256x192.joint -i pose-1.jpeg -r 10
218
+ --------------------------------------
219
+ model file : models/hrnet_256x192.joint
220
+ image file : images/pose-1.jpeg
221
+ img_h, img_w : 256 192
222
+ Run-Joint Runtime version: 0.5.10
223
+ --------------------------------------
224
+ [INFO]: Virtual npu mode is 1_1
225
+
226
+ Tools version: 0.6.0.30
227
+ 100b6396
228
+ run over: output len 1
229
+ --------------------------------------
230
+ Create handle took 1385.15 ms (neu 25.64 ms, axe 0.00 ms, overhead 1359.51 ms)
231
+ --------------------------------------
232
+ Repeat 10 times, avg time 14.11 ms, max_time 14.64 ms, min_time 14.04 ms
233
+ --------------------------------------
234
+ ```
235
+ ![ HRNet] ( ../docs/hrnet.png )
236
+
145
237
## 模型说明
146
238
### YOLOv3(Paddle)
147
239
YOLOv3(Paddle) 源自国内产业级深度学习开源框架飞桨的目标检测开发套件 [ PaddleDetection] ( https://github.com/PaddlePaddle/PaddleDetection ) ,通过速度与精度权衡,我们选择基于 416尺度的 [ YOLOv3-Res34] ( https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/ ) 进行功能展示。
@@ -159,7 +251,7 @@ YOLOv3(Paddle) 源自国内产业级深度学习开源框架飞桨的目标检
159
251
#### Sample
160
252
161
253
```
162
- root@AXERA:~/qtang # ./ax_paddle_yolov3 -m yolov3_paddle.joint -i dog.jpg -r 10
254
+ root@AXERA:~/samples # ./ax_paddle_yolov3 -m yolov3_paddle.joint -i dog.jpg -r 10
163
255
--------------------------------------
164
256
model file : yolov3_paddle.joint
165
257
image file : dog.jpg
@@ -198,7 +290,7 @@ MobileSeg 源自国内产业级深度学习开源框架飞桨的高性能图像
198
290
#### Sample
199
291
200
292
```
201
- root@AXERA:~/qtang # ./ax_paddle_mobileseg -m model_mv2seg_sim_cut_infer_argmax.joint -i mv2seg.png -r 10
293
+ root@AXERA:~/samples # ./ax_paddle_mobileseg -m model_mv2seg_sim_cut_infer_argmax.joint -i mv2seg.png -r 10
202
294
--------------------------------------
203
295
model file : model_mv2seg_sim_cut_infer_argmax.joint
204
296
image file : mv2seg.png
@@ -231,7 +323,7 @@ PP-HumanSeg 源自国内产业级深度学习开源框架飞桨的高性能图
231
323
#### Sample
232
324
233
325
```
234
- root@AXERA:~/qtang # ./ax_paddle_mobilehumseg -m pp_human_seg_mobile_sim.joint -i pose-1.jpeg -r 10
326
+ root@AXERA:~/samples # ./ax_paddle_mobilehumseg -m pp_human_seg_mobile_sim.joint -i pose-1.jpeg -r 10
235
327
--------------------------------------
236
328
model file : pp_human_seg_mobile_sim.joint
237
329
image file : pose-1.jpeg
0 commit comments