-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclimbing-route.js
383 lines (297 loc) · 12.6 KB
/
climbing-route.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
/*
My solution to Climbing Route Challenge from checkio.org
https://js.checkio.org/en/mission/old-climbing-route/
*/
/*
Description from Checkio:
You have an elevation map and you want to know the shortest climbing route.
The map is given as a list of strings.
0 : plain ( elevation is 0)
1-9 : hill (number is elevation)
"mountain" is adjacent (only 4 directions) hill group.
It consists of two or more hills.
Isolated hill is not mountain.
Start is top-left. Goal is bottom-right. You have to go over all the mountaintops.
You can only move vertical and horizontal.
And you can only move to the same or one elevation difference.
You should look for the shortest route and return Number of steps.
(if mountains do not exist, You may go to the goal at the shortest from the start.)
*/
/*
Conditions given by Checkio:
Input: A elevation map as a list of strings.
Output: number of steps as Integer.
Precondition:
elevation_map[0][0] == elevation_map[-1][-1] == '0'
3 ≤ len(elevation_map)
all(3 ≤ len(row) and len(row) == len(elevation_map[0]) for row in elevation__map)
Each mountain has only one mountaintop.
There is no mountain that can not climb.
*/
/*
Find the minimum distance between top left corner all accessible peaks ending in the bottom row.
Input is an array of string with numbers giving the elevation of the tile in the grid.
Elevation difference > 1 is not walkable.
*/
"use strict";
function climbingRoute(elevation_map) {
var neighbours = [[-1, 0], [0, 1], [1, 0], [0, -1]];
var I = 99999;
var numTiles = elevation_map.length * elevation_map[0].length;
var numTiles_TMP;
var pointStack = [];
elevation_map = elevation_map.map((x) => (x.split("").map(Number)));
var mountainTops = new Map();
mountainTops.set("0,0", [0, 0]);
mountainTops = peakFinder(mountainTops, elevation_map);
mountainTops.set((elevation_map.length - 1) + "," + (elevation_map[0].length - 1), [elevation_map.length - 1, elevation_map[0].length - 1]);
var distances = [];
var topPoints = [];
mountainTops.forEach(x => topPoints.push(x));
distances = getDistances(topPoints);
/*
Creates a array/queue
with all the tile coordinates in the elevation map.
Removes the tile from the queue if it's distances to all peaks
are found. Adds the tile back to the ending of the queue if
all distances not yet are found.
*/
function getDistances(fromPoints) {
var distance_maps = [];
var loopProtect = 999999;
var fromPoint;
for (let i in fromPoints) {
fromPoint = fromPoints[i];
var distance_map = elevation_map.slice();
distance_map = distance_map.map((x, ix) => x.map((y) => I));
distance_map[fromPoint[0]][fromPoint[1]] = 0;
distance_maps.push(distance_map);
}
for (let r = 0; r < distance_map.length; r++) {
for (let c = 0; c < distance_map[0].length; c++) {
pointStack.push([r, c]); // Makes a stack of all tile points.
}
}
while (pointStack.length > 0 && loopProtect >= 0) {
loopProtect--;
let tmp_point = pointStack.shift();
let allFound = estimateDistances(elevation_map, distance_maps, tmp_point[0], tmp_point[1], neighbours);
if (!allFound) pointStack.push(tmp_point);
}
let outputDistances = [];
for (let d in distance_maps) {
let oTMP = [];
mountainTops.forEach(x => oTMP.push(distance_maps[d][x[0]][x[1]]));
outputDistances.push(oTMP);
}
return outputDistances;
}
/*
Fills all the tiles in the distance array
for each mountain top with the shortest distances
away from the top.
*/
function estimateDistances(arr, distArrays, row, col, neighbours) {
let currentTile = arr[row][col];
let currentDist;
let neighbourRow, neighbourCol;
let countFoundI = 0;
for (let d in distArrays) {
let distArr = distArrays[d];
currentDist = distArr[row][col];
for (let i in neighbours) {
neighbourRow = row + neighbours[i][0];
neighbourCol = col + neighbours[i][1];
if (neighbourRow < 0 || neighbourRow >= arr.length || neighbourCol < 0 || neighbourCol >= arr[0].length) continue;
if (distArr[row][col] === I) return false;
if (Math.abs(currentTile - arr[neighbourRow][neighbourCol]) <= 1) { // is climbable
if (distArr[neighbourRow][neighbourCol] > currentDist) {
distArr[neighbourRow][neighbourCol] = currentDist + 1;
}
}
if (distArr[row][col] === I) countFoundI++;
}
}
if (countFoundI === 0) return true;
return false;
}
function peakFinder(peaks, elevations_arr) {
let neighbourRow, neighbourCol;
for (let row = 0; row < elevations_arr.length; row++) {
for (let col = 0; col < elevations_arr[0].length; col++) {
let slopeDownCount = 4; // Precondition is that there are no more than 1 true peak. Therefore all neighbouring slopes must be downward.
let slopeDownLargerThan1 = 4; // peak not accessible if slopeDownLargerThan1 = 0
let currentTile = elevations_arr[row][col];
for (let neighbour_i in neighbours) {
neighbourRow = row + neighbours[neighbour_i][0];
neighbourCol = col + neighbours[neighbour_i][1];
if (neighbourRow < 0 || neighbourRow >= elevations_arr.length ||
neighbourCol < 0 || neighbourCol >= elevations_arr[0].length) {
if (currentTile >= 2) slopeDownCount--; //near edge
slopeDownLargerThan1--;
continue;
}
if (currentTile >= 2 && (currentTile > elevations_arr[neighbourRow][neighbourCol])) {
slopeDownCount--; // peak finder
if ((currentTile - elevations_arr[neighbourRow][neighbourCol]) > 1) slopeDownLargerThan1--;
}
}
if (slopeDownCount <= 0 && slopeDownLargerThan1 > 0) { // if slopeDownLargerThan1 == 0 then there are no walkable slopes.
if (isTrueTop(elevations_arr, elevations_arr[row][col], row, col)) peaks.set(row + "," + col, [row, col]);
}
}
}
/*
Checks if a mountain top is a true mountain top by an army of scouting ants :).
Each ant moves recursively outward in all directions from the predicted
mountain top, and checks if there is a higher peak. Returns false if a higher or same
height peak is found on the current mountain.
*/
function isTrueTop(elevations_arr, maxHeight, rowPeak, colPeak) {
var directions = [[-1, 0], [0, 1], [1, 0], [0, -1]]; // 0: up 1: left 2: down 3: right
var abortR = false;
var visited = elevations_arr.map(x => x.slice());
var safety = 999; // Prevents infinite loop in case there is no route.
startScoutingAnt(rowPeak, colPeak);
function startScoutingAnt(rowPeak, colPeak) {
visited[rowPeak][colPeak] = "V";
scoutingAnt(0, rowPeak, colPeak);
scoutingAnt(1, rowPeak, colPeak);
scoutingAnt(2, rowPeak, colPeak);
scoutingAnt(3, rowPeak, colPeak);
}
function scoutingAnt(dir, rowPeak, colPeak) {
safety--;
if (!abortR && safety >= 0) {
let rCurrentPos = rowPeak + directions[dir][0];
let cCurrentPos = colPeak + directions[dir][1];
if (rCurrentPos >= 0 && cCurrentPos >= 0 && rCurrentPos <
elevations_arr.length && cCurrentPos < elevations_arr[0].length) {
let currentElev = elevations_arr[rCurrentPos][cCurrentPos];
let tileVisited = visited[rCurrentPos][cCurrentPos];
if (currentElev >= maxHeight && tileVisited != "V") {
abortR = true;
}
else if (currentElev > 0 && tileVisited != "V") {
visited[rCurrentPos][cCurrentPos] = "V";
if (dir === 0 || dir === 2) {
scoutingAnt(dir, rCurrentPos, cCurrentPos);
scoutingAnt(1, rCurrentPos, cCurrentPos);
scoutingAnt(3, rCurrentPos, cCurrentPos);
}
else if (dir === 1 || dir === 3) {
scoutingAnt(dir, rCurrentPos, cCurrentPos);
scoutingAnt(0, rCurrentPos, cCurrentPos);
scoutingAnt(2, rCurrentPos, cCurrentPos);
}
}
}
}
}
return !abortR;
}
return peaks;
}
/*
Brute force implementation of traveling salesman problem.
Generates permutations of all the peaks. Adds up the distances,
then returns the mimimum distance
*/
function bruteForceTravelingSalesman(distArr) {
var startVertex = 1;
var endVertex = distArr.length - 2;
var vertexes = genNumbersArr(0, distArr.length - 1);
var pArray = permutateArray(vertexes, startVertex, endVertex);
var tmp_dist = 0;
var nextPoint, currentPoint;
var pDistances = [];
for (let i = 0; i < pArray.length; i++) {
tmp_dist = 0;
for (let j = 0; j < pArray[0].length - 1; j++) {
currentPoint = pArray[i][j];
nextPoint = pArray[i][j + 1];
tmp_dist += distArr[currentPoint][nextPoint];
}
pDistances.push(tmp_dist);
}
function genNumbersArr(s, e) {
let numlist = [];
for (let i = s; i <= e; i++) {
numlist.push(i);
}
return numlist;
}
function permutateArray(arrP, s, e) {
var outputArr = [];
permuteInner(arrP, s, e);
function permuteInner(arrP, s, e) {
arrP = arrP.slice();
if (s === e) outputArr.push(arrP);
else {
for (let i = s; i <= e; i++) {
arrP = swap(arrP, s, i);
permuteInner(arrP, s + 1, e);
arrP = swap(arrP, s, i);
}
}
}
function swap(arrS, i1, i2) {
let arr_tmp = arrS[i2];
arrS[i2] = arrS[i1];
arrS[i1] = arr_tmp;
return arrS;
}
return outputArr;
}
var minDistance = 99999999999999;
return pDistances.reduce((x, y) => Math.min(x, y), 9999999999);
}
if (distances.length === 2) return distances[0][1];
if (distances.length === 3) return distances[0][1] + distances[1][2];
var result = bruteForceTravelingSalesman(distances);
return result;
}
var assert = require('assert');
if (!global.is_checking) {
assert.equal(climbingRoute([
'000',
'210',
'000']), 6, 'basic')
assert.equal(climbingRoute([
'00000',
'05670',
'04980',
'03210',
'00000']), 26, 'spiral')
assert.equal(climbingRoute([
'000000001',
'222322222',
'100000000']), 26, 'bridge')
assert.equal(climbingRoute([
'000000002110',
'011100002310',
'012100002220',
'011100000000']), 26, 'two top')
assert.equal(climbingRoute([
'000000120000',
'001002432100',
'012111211000',
'001000000000']), 16, 'one top')
assert.equal(climbingRoute([
'00000000111111100',
'00000000122222100',
'00000000123332100',
'00000000123432100',
'00000000123332100',
'00000000122222100',
'00000000111111100',
'00011111000000000',
'00012221000000000',
'00012321000000000',
'00012221000000012',
'00011111000000000',
'11100000000000000',
'12100000000000000',
'11100000000000000']), 52, 'pyramids')
console.log("All checks passed!");
}