-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils_prompt_tuning.py
98 lines (78 loc) · 3 KB
/
utils_prompt_tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
"""Official evaluation script for the MRQA Workshop Shared Task.
Adapted fromt the SQuAD v1.1 official evaluation script.
Usage:
python official_eval.py dataset_file.jsonl.gz prediction_file.json
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import string
import re
import json
import gzip
import sys
from collections import Counter
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
return re.sub(r'\b(a|an|the)\b', ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def f1_score(prediction, ground_truth):
prediction_tokens = normalize_answer(prediction).split()
ground_truth_tokens = normalize_answer(ground_truth).split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def exact_match_score(prediction, ground_truth):
return (normalize_answer(prediction) == normalize_answer(ground_truth))
def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
scores_for_ground_truths = []
for ground_truth in ground_truths:
score = metric_fn(prediction, ground_truth)
scores_for_ground_truths.append(score)
return max(scores_for_ground_truths)
def read_predictions(prediction_file):
with open(prediction_file) as f:
predictions = json.load(f)
return predictions
def read_answers(gold_file):
answers = {}
with gzip.open(gold_file, 'rb') as f:
for i, line in enumerate(f):
example = json.loads(line)
if i == 0 and 'header' in example:
continue
for qa in example['qas']:
answers[qa['qid']] = qa['answers']
return answers
def evaluate(answers, predictions, skip_no_answer=False):
f1 = exact_match = total = 0
for qid, ground_truths in answers.items():
if qid not in predictions:
if not skip_no_answer:
message = 'Unanswered question %s will receive score 0.' % qid
print(message)
total += 1
continue
total += 1
prediction = predictions[qid]
exact_match += metric_max_over_ground_truths(
exact_match_score, prediction, ground_truths)
f1 += metric_max_over_ground_truths(
f1_score, prediction, ground_truths)
exact_match = 100.0 * exact_match / total
f1 = 100.0 * f1 / total
return {'exact_match': exact_match, 'f1': f1}