-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
33 lines (26 loc) · 1.14 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from pyspark.sql import SparkSession, DataFrame
from pyspark import SparkContext
import numpy as np
import pandas as pd
from instrument import *
from article import *
from analysis import *
from stats import *
if __name__ == '__main__':
symbol_map = {'semiconductor': ['QCOM', 'ASML', 'INTC', 'NVDA'],\
'automobile': ['TM', 'WKHS', 'GM', 'TSLA', 'FCAU', 'CVX'],\
'oil': ['BP', 'XOM', 'TOT'],\
'airline': ['AAL', 'LUV', 'DAL', 'UAL', 'JBLU']}
symbols = [symbol for symbol_list in symbol_map.values() for symbol in symbol_list]
startdate = datetime(2015, 1, 1)
enddate = datetime(2017, 1, 1)
interval = timedelta(weeks=4)
sc = SparkContext("local[*]", "Price Prediction")
spark = SparkSession(sc)
spark.sparkContext.setLogLevel("ERROR")
engine = AnalyticEngine(symbol_map, startdate, enddate, interval, spark)
engine.add_all()
timeline_df = engine.data['QCOM']['timeline_df']
windows = [3, 7, 11, 15]
engine.analyze_accuracies(windows=windows, save_fig=True, show_fig=False)
engine.analyze_covs(windows=windows, save_fig=True, show_fig=False)