|
10 | 10 | )
|
11 | 11 | from mdsuite.file_io import script_input
|
12 | 12 |
|
13 |
| -# mdsuite.config.memory_fraction = 1.0 |
14 |
| -# mdsuite.config.memory_scaling_test = True |
| 13 | +mdsuite.config.memory_fraction = 1.0 |
| 14 | +mdsuite.config.memory_scaling_test = True |
15 | 15 |
|
16 | 16 |
|
17 | 17 | def get_project(tmp_path, n_configs, n_parts) -> mdsuite.Project:
|
@@ -56,38 +56,58 @@ def get_project(tmp_path, n_configs, n_parts) -> mdsuite.Project:
|
56 | 56 | return project
|
57 | 57 |
|
58 | 58 |
|
59 |
| -@pytest.mark.parametrize("n_parts", [x for x in range(10, 300, 10)]) |
60 |
| -@pytest.mark.memory |
61 |
| -def test_adf(tmp_path, n_parts): |
62 |
| - project = get_project(tmp_path, n_configs=5, n_parts=n_parts) |
63 |
| - _ = project.run.AngularDistributionFunction(number_of_configurations=2, plot=False) |
64 |
| - |
65 |
| - |
66 |
| -@pytest.mark.parametrize("n_parts", [x for x in range(100, 12000, 200)]) |
| 59 | +@pytest.mark.parametrize("n_parts", [x for x in range(100, 10000, 200)]) |
67 | 60 | @pytest.mark.memory
|
68 | 61 | def test_rdf(tmp_path, n_parts):
|
69 | 62 | project = get_project(tmp_path, n_configs=15, n_parts=n_parts)
|
70 | 63 | _ = project.run.RadialDistributionFunction(number_of_configurations=10, plot=False)
|
71 | 64 |
|
72 | 65 |
|
73 |
| -@pytest.mark.parametrize("n_configs", [x for x in range(100, 12000, 200)]) |
74 |
| -@pytest.mark.memory |
75 |
| -def test_einstein_diffusion(tmp_path, n_configs): |
76 |
| - # TODO What do we want to actually loop over |
77 |
| - project = get_project(tmp_path, n_configs=n_configs, n_parts=100) |
78 |
| - _ = project.run.EinsteinDiffusionCoefficients(plot=False) |
| 66 | +@pytest.fixture(params=[x for x in range(100, 10000, 200)]) |
| 67 | +def rdf_project(tmp_path, request): |
| 68 | + project = get_project(tmp_path, n_configs=15, n_parts=request.param) |
| 69 | + return project |
79 | 70 |
|
80 | 71 |
|
81 |
| -@pytest.mark.parametrize("data_range", [x for x in range(10, 10000, 200)]) |
82 | 72 | @pytest.mark.memory
|
83 |
| -def test_einstein_diffusion_data_range(tmp_path, data_range): |
84 |
| - project = get_project(tmp_path, n_configs=12000, n_parts=100) |
85 |
| - _ = project.run.EinsteinDiffusionCoefficients(plot=False, data_range=data_range) |
| 73 | +def test_rdf_w_fixt(rdf_project): |
| 74 | + _ = rdf_project.run.RadialDistributionFunction( |
| 75 | + number_of_configurations=10, plot=False |
| 76 | + ) |
86 | 77 |
|
87 | 78 |
|
88 |
| -@pytest.mark.parametrize("n_configs", [x for x in range(500, 12000, 200)]) |
89 |
| -@pytest.mark.memory |
90 |
| -def test_gk_diffusion(tmp_path, n_configs): |
91 |
| - # TODO What do we want to actually loop over |
92 |
| - project = get_project(tmp_path, n_configs=n_configs, n_parts=100) |
93 |
| - _ = project.run.GreenKuboDiffusionCoefficients(plot=False) |
| 79 | +# @pytest.mark.parametrize("n_parts", [x for x in range(10, 300, 10)]) |
| 80 | +# @pytest.mark.memory |
| 81 | +# def test_adf(tmp_path, n_parts): |
| 82 | +# project = get_project(tmp_path, n_configs=5, n_parts=n_parts) |
| 83 | +# _ = project.run.AngularDistributionFunction(number_of_configurations=2, plot=False) |
| 84 | +# |
| 85 | +# |
| 86 | +# @pytest.mark.parametrize("n_parts", [x for x in range(100, 12000, 200)]) |
| 87 | +# @pytest.mark.memory |
| 88 | +# def test_rdf(tmp_path, n_parts): |
| 89 | +# project = get_project(tmp_path, n_configs=15, n_parts=n_parts) |
| 90 | +# _ = project.run.RadialDistributionFunction(number_of_configurations=10, plot=False) |
| 91 | +# |
| 92 | +# |
| 93 | +# @pytest.mark.parametrize("n_configs", [x for x in range(100, 12000, 200)]) |
| 94 | +# @pytest.mark.memory |
| 95 | +# def test_einstein_diffusion(tmp_path, n_configs): |
| 96 | +# # TODO What do we want to actually loop over |
| 97 | +# project = get_project(tmp_path, n_configs=n_configs, n_parts=100) |
| 98 | +# _ = project.run.EinsteinDiffusionCoefficients(plot=False) |
| 99 | +# |
| 100 | +# |
| 101 | +# @pytest.mark.parametrize("data_range", [x for x in range(10, 10000, 200)]) |
| 102 | +# @pytest.mark.memory |
| 103 | +# def test_einstein_diffusion_data_range(tmp_path, data_range): |
| 104 | +# project = get_project(tmp_path, n_configs=12000, n_parts=100) |
| 105 | +# _ = project.run.EinsteinDiffusionCoefficients(plot=False, data_range=data_range) |
| 106 | +# |
| 107 | +# |
| 108 | +# @pytest.mark.parametrize("n_configs", [x for x in range(500, 12000, 200)]) |
| 109 | +# @pytest.mark.memory |
| 110 | +# def test_gk_diffusion(tmp_path, n_configs): |
| 111 | +# # TODO What do we want to actually loop over |
| 112 | +# project = get_project(tmp_path, n_configs=n_configs, n_parts=100) |
| 113 | +# _ = project.run.GreenKuboDiffusionCoefficients(plot=False) |
0 commit comments