|
| 1 | +import torch |
| 2 | +import torch.nn.functional as F |
| 3 | +from torch import nn |
| 4 | +from torchvision import models |
| 5 | + |
| 6 | +from ..utils import initialize_weights |
| 7 | + |
| 8 | +from .psp_net import _PyramidPoolingModule |
| 9 | + |
| 10 | + |
| 11 | +class PSPHead(nn.Module): |
| 12 | + def __init__(self, num_classes): |
| 13 | + super().__init__() |
| 14 | + |
| 15 | + self.ppm = _PyramidPoolingModule(2048, 512, (1, 2, 3, 6)) |
| 16 | + self.final = nn.Sequential( |
| 17 | + nn.Conv2d(4096, 512, kernel_size=3, padding=1, bias=False), |
| 18 | + nn.BatchNorm2d(512, momentum=.95), |
| 19 | + nn.ReLU(inplace=True), |
| 20 | + nn.Dropout(0.1), |
| 21 | + nn.Conv2d(512, num_classes, kernel_size=1) |
| 22 | + ) |
| 23 | + |
| 24 | + initialize_weights(self.ppm, self.final) |
| 25 | + |
| 26 | + def forward(self, features_from_backbone, img_size): |
| 27 | + result = self.final(self.ppm(features_from_backbone)) |
| 28 | + return F.interpolate(result, img_size[2:], mode='bilinear') |
| 29 | + |
| 30 | + |
| 31 | +class PSPNet_Multihead(nn.Module): |
| 32 | + def __init__(self, num_heads, num_classes, pretrained=True): |
| 33 | + super().__init__() |
| 34 | + |
| 35 | + self.init_heads(num_heads, num_classes=num_classes) |
| 36 | + self.init_backbone(pretrained=pretrained) |
| 37 | + |
| 38 | + def init_backbone(self, pretrained): |
| 39 | + resnet = models.resnet101(pretrained=pretrained) |
| 40 | + |
| 41 | + for n, m in resnet.layer3.named_modules(): |
| 42 | + if 'conv2' in n: |
| 43 | + m.dilation, m.padding, m.stride = (2, 2), (2, 2), (1, 1) |
| 44 | + elif 'downsample.0' in n: |
| 45 | + m.stride = (1, 1) |
| 46 | + for n, m in resnet.layer4.named_modules(): |
| 47 | + if 'conv2' in n: |
| 48 | + m.dilation, m.padding, m.stride = (4, 4), (4, 4), (1, 1) |
| 49 | + elif 'downsample.0' in n: |
| 50 | + m.stride = (1, 1) |
| 51 | + |
| 52 | + self.backbone = nn.Sequential( |
| 53 | + nn.Sequential(resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool), # layer 0 |
| 54 | + resnet.layer1, |
| 55 | + resnet.layer2, |
| 56 | + resnet.layer3, |
| 57 | + resnet.layer4, |
| 58 | + ) |
| 59 | + |
| 60 | + def init_heads(self, num_heads, num_classes): |
| 61 | + |
| 62 | + self.heads = nn.Sequential( |
| 63 | + *[PSPHead(num_classes=num_classes) for i in range(num_heads)] |
| 64 | + ) |
| 65 | + |
| 66 | + def forward(self, image): |
| 67 | + img_size = image.size() |
| 68 | + |
| 69 | + backbone_features = self.backbone(image) |
| 70 | + |
| 71 | + return torch.cat([ |
| 72 | + head(backbone_features, img_size=img_size) |
| 73 | + for head in self.heads |
| 74 | + ], dim=1) |
| 75 | + |
0 commit comments