|
| 1 | +import cv2 |
| 2 | +import numpy as np |
| 3 | +import os |
| 4 | +import random |
| 5 | +from matplotlib import pyplot as plt |
| 6 | + |
| 7 | +# create by Feng, edit by Feng 2017 / 08 / 14 |
| 8 | +# this project is doing image data augmentation for any DL/ML algorithm |
| 9 | +# |
| 10 | + |
| 11 | +# avg blur minimum filter size is 3 |
| 12 | + |
| 13 | +def avg_blur(img, max_filiter_size = 3) : |
| 14 | + img = img.astype(np.uint8) |
| 15 | + if max_filiter_size >= 3 : |
| 16 | + filter_size = random.randint(3, max_filiter_size) |
| 17 | + if filter_size % 2 == 0 : |
| 18 | + filter_size += 1 |
| 19 | + out = cv2.blur(img, (filter_size, filter_size)) |
| 20 | + return out |
| 21 | + |
| 22 | +# gaussain blur minimum filter size is 3 |
| 23 | +# when sigma = 0 gaussain blur weight will compute by program |
| 24 | +# when the sigma is more large the blur effect more obvious |
| 25 | + |
| 26 | +def gaussain_blur(img, max_filiter_size = 3, sigma = 0) : |
| 27 | + img = img.astype(np.uint8) |
| 28 | + if max_filiter_size >= 3 : |
| 29 | + filter_size = random.randint(3, max_filiter_size) |
| 30 | + if filter_size % 2 == 0 : |
| 31 | + filter_size += 1 |
| 32 | + #print ('size = %d'% filter_size) |
| 33 | + out = cv2.GaussianBlur(img, (filter_size, filter_size), sigma) |
| 34 | + return out |
| 35 | + |
| 36 | +def gaussain_noise(img, mean = 0, var = 0.1) : |
| 37 | + img = img.astype(np.uint8) |
| 38 | + h, w, c = img.shape |
| 39 | + sigma = var ** 0.5 |
| 40 | + gauss = np.random.normal(mean, sigma, (h, w, c)) |
| 41 | + gauss = gauss.reshape(h, w, c).astype(np.uint8) |
| 42 | + noisy = img + gauss |
| 43 | + return noisy |
| 44 | + |
| 45 | +# fill_pixel is 0(black) or 255(white) |
| 46 | + |
| 47 | +def img_shift(img, x_min_shift_piexl = -1, x_max_shift_piexl = 1, y_min_shift_piexl = -1, y_max_shift_piexl = 1, fill_pixel = 0) : |
| 48 | + img = img.astype(np.uint8) |
| 49 | + h, w, c = img.shape |
| 50 | + out = np.zeros(img.shape) |
| 51 | + if fill_pixel == 255 : |
| 52 | + out[:, :] = 255 |
| 53 | + out = out.astype(np.uint8) |
| 54 | + move_x = random.randint(x_min_shift_piexl, x_max_shift_piexl) |
| 55 | + move_y = random.randint(y_min_shift_piexl, y_max_shift_piexl) |
| 56 | + #print (('move_x = %d')% (move_x)) |
| 57 | + #print (('move_y = %d')% (move_y)) |
| 58 | + if move_x >= 0 and move_y >= 0 : |
| 59 | + out[move_y:, move_x: ] = img[0: (h - move_y), 0: (w - move_x)] |
| 60 | + elif move_x < 0 and move_y < 0 : |
| 61 | + out[0: (h + move_y), 0: (w + move_x)] = img[ - move_y:, - move_x:] |
| 62 | + elif move_x >= 0 and move_y < 0 : |
| 63 | + out[0: (h + move_y), move_x:] = img[ - move_y:, 0: (w - move_x)] |
| 64 | + elif move_x < 0 and move_y >= 0 : |
| 65 | + out[move_y:, 0: (w + move_x)] = img[0 : (h - move_y), - move_x:] |
| 66 | + return out |
| 67 | + |
| 68 | +# In img_rotation func. rotation center is image center |
| 69 | + |
| 70 | +def img_rotation(img, min_angel = 0, max_angel = 0, min_scale = 1, max_scale = 1, fill_pixel = 0) : |
| 71 | + img = img.astype(np.uint8) |
| 72 | + h, w, c = img.shape |
| 73 | + _angel = random.randint(min_angel, max_angel) |
| 74 | + _scale = random.uniform(min_scale, max_scale) |
| 75 | + rotation_matrix = cv2.getRotationMatrix2D((w / 2, h / 2), _angel, _scale) |
| 76 | + out = cv2.warpAffine(img, rotation_matrix, (w, h)) |
| 77 | + if fill_pixel == 255 : |
| 78 | + mask = np.zeros(img.shape) |
| 79 | + mask[:, :, :] = 255 |
| 80 | + mask = mask.astype(np.uint8) |
| 81 | + mask = cv2.warpAffine(mask, rotation_matrix, (w, h)) |
| 82 | + for i in range (h) : |
| 83 | + for j in range(w) : |
| 84 | + if mask[i, j, 0] == 0 and mask[i, j, 1] == 0 and mask[i, j, 2] == 0 : |
| 85 | + out[i, j, :] = 255 |
| 86 | + return out |
| 87 | + |
| 88 | +# In img_flip func. it will random filp image |
| 89 | +# when flip factor is 1 it will do hor. flip (Horizontal) |
| 90 | +# 0 ver. flip (Vertical) |
| 91 | +# -1 hor. + ver flip |
| 92 | + |
| 93 | +def img_flip(img) : |
| 94 | + img = img.astype(np.uint8) |
| 95 | + flip_factor = random.randint(-1, 1) |
| 96 | + out = cv2.flip(img, flip_factor) |
| 97 | + return out |
| 98 | + |
| 99 | +# Zoom image by scale |
| 100 | + |
| 101 | +def img_zoom(img, min_scale = 1, max_scale = 1) : |
| 102 | + img = img.astype(np.uint8) |
| 103 | + h, w, c = img.shape |
| 104 | + scale = random.uniform(min_scale, max_scale) |
| 105 | + h = int(h * scale) |
| 106 | + w = int(w * scale) |
| 107 | + out = cv2.resize(img, (w, h), interpolation=cv2.INTER_CUBIC) |
| 108 | + return out |
| 109 | + |
| 110 | +# change image contrast by hsv |
| 111 | + |
| 112 | +def img_contrast(img, min_s, max_s, min_v, max_v) : |
| 113 | + img = img.astype(np.uint8) |
| 114 | + hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) |
| 115 | + _s = random.randint(min_s, max_s) |
| 116 | + _v = random.randint(min_v, max_v) |
| 117 | + if _s >= 0 : |
| 118 | + hsv_img[:, :, 1] += _s |
| 119 | + else : |
| 120 | + _s = - _s |
| 121 | + hsv_img[:, :, 1] -= _s |
| 122 | + if _v >= 0 : |
| 123 | + hsv_img[:, :, 2] += _v |
| 124 | + else : |
| 125 | + _v = - _v |
| 126 | + hsv_img[:, :, 2] += _v |
| 127 | + out = cv2.cvtColor(hsv_img, cv2.COLOR_HSV2BGR) |
| 128 | + return out |
| 129 | + |
| 130 | +# change image color by hsv |
| 131 | + |
| 132 | +def img_color(img, min_h, max_h) : |
| 133 | + img = img.astype(np.uint8) |
| 134 | + hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) |
| 135 | + _h = random.randint(min_h, max_h) |
| 136 | + hsv_img[:, :, 0] += _h |
| 137 | + out = cv2.cvtColor(hsv_img, cv2.COLOR_HSV2BGR) |
| 138 | + return out |
| 139 | + |
| 140 | + |
| 141 | + |
| 142 | + |
| 143 | + |
| 144 | + |
| 145 | + |
| 146 | + |
| 147 | + |
| 148 | + |
| 149 | + |
| 150 | + |
| 151 | + |
| 152 | + |
| 153 | + |
| 154 | + |
| 155 | + |
| 156 | + |
| 157 | + |
| 158 | + |
| 159 | + |
| 160 | + |
| 161 | + |
| 162 | + |
| 163 | + |
| 164 | + |
| 165 | + |
| 166 | + |
0 commit comments