-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathvideo.py
55 lines (47 loc) · 1.94 KB
/
video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import torch
import imageio
from os import path
from tqdm import tqdm
from model import mipNeRF360
from intern.utils import to8b
from config import get_config
from dataset import get_dataloader
from intern.pose import visualize_depth, visualize_normals
def visualize(config):
data = get_dataloader(config.dataset_name, config.base_dir, split="render", factor=config.factor, shuffle=False)
model = mipNeRF360(
randomized=config.randomized,
num_samples=config.num_samples,
hidden_proposal=config.hidden_proposal,
hidden_nerf=config.hidden_nerf,
density_bias=config.density_bias,
rgb_padding=config.rgb_padding,
resample_padding=config.resample_padding,
white_bkgd=config.white_bkgd,
viewdir_min_deg=config.viewdir_min_deg,
viewdir_max_deg=config.viewdir_max_deg,
device=config.device
)
model.load_state_dict(torch.load(config.model_weight_path))
model.eval()
print("Generating Video using", len(data), "different view points")
rgb_frames = []
if config.visualize_depth:
depth_frames = []
if config.visualize_normals:
normal_frames = []
for ray in tqdm(data):
img, dist, acc = model.render_image(ray, data.h, data.w, chunks=config.chunks)
rgb_frames.append(img)
if config.visualize_depth:
depth_frames.append(to8b(visualize_depth(dist, acc, data.near, data.far)))
if config.visualize_normals:
normal_frames.append(to8b(visualize_normals(dist, acc)))
imageio.mimwrite(path.join(config.log_dir, "video.mp4"), rgb_frames, fps=30, quality=10)
if config.visualize_depth:
imageio.mimwrite(path.join(config.log_dir, "depth.mp4"), depth_frames, fps=30, quality=10)
if config.visualize_normals:
imageio.mimwrite(path.join(config.log_dir, "normals.mp4"), normal_frames, fps=30, quality=10)
if __name__ == "__main__":
config = get_config()
visualize(config)