|
24 | 24 | "# standard imports\n",
|
25 | 25 | "import zfit\n",
|
26 | 26 | "import zfit.z.numpy as znp # use this \"numpy-like\" for mathematical operations\n",
|
| 27 | + "import zfit_physics as zphys # physics module, with new physics-inspired PDFs\n", |
27 | 28 | "from zfit import z"
|
28 | 29 | ]
|
29 | 30 | },
|
|
35 | 36 | "outputs": [],
|
36 | 37 | "source": [
|
37 | 38 | "# example usage of the numpy-like backend, use it if possible\n",
|
| 39 | + "\n", |
| 40 | + "\n", |
38 | 41 | "@z.function\n",
|
39 | 42 | "def maximum(x, y):\n",
|
40 | 43 | " return znp.maximum(x, y)\n",
|
|
133 | 136 | "outputs": [],
|
134 | 137 | "source": [
|
135 | 138 | "# this allows, for example, for a more intuitive way\n",
|
136 |
| - "np.linspace(*obs12.v1.limits, 7)" |
| 139 | + "np.linspace(*obs12.v1.limits, num=7)" |
137 | 140 | ]
|
138 | 141 | },
|
139 | 142 | {
|
|
205 | 208 | "source": [
|
206 | 209 | "## PDFs\n",
|
207 | 210 | "\n",
|
208 |
| - "- there are a plethora of new PDFs, mostly covering physics inspired use-cases. Amongst the interesting ones are a `GeneralizedCB`, a more general version of the `DoubleCB` that should be preferred in the future. Also a Voigt profile is available, Bernstein polynomials, QGauss, GaussExpTail, etc.\n", |
| 211 | + "- there are a plethora of new PDFs, mostly covering physics inspired use-cases. Amongst the interesting ones are a `GeneralizedCB`, a more general version of the `DoubleCB` that should be preferred in the future. A Voigt profile is available, Bernstein polynomials, QGauss, GaussExpTail, etc. and in [zfit-physics](https://zfit.readthedocs.io/en/latest/user_api/zfit.pdf.html#physics-pdfs) HEP specific PDFS , from `CMSShape`, `Cruijff`, `Novosibirsk` and more. \n", |
209 | 212 | "- the `TruncatedPDF` has been added to allow for a more flexible way of truncating a PDF. Any PDF can be converted to a truncated version using `to_truncated` (which, by default, truncates to the limits of the space).\n",
|
210 | 213 | "- PDFs have a new `plot` method that allows for a quick plotting of the PDF (it takes an \"obs\" argument that allows to simply project it!). This is still experimental and may changes, the main purpose is to allow for a quick check of the PDF in interactive environments. The function is fully compatible with matplotlib and takes an `ax` argument, it also allows to pass through any keyword arguments to the plotting function."
|
211 | 214 | ]
|
|
217 | 220 | "metadata": {},
|
218 | 221 | "outputs": [],
|
219 | 222 | "source": [
|
220 |
| - "# all the new PDFs" |
| 223 | + "# all the new PDFs\n", |
| 224 | + "print(zfit.pdf.__all__)" |
221 | 225 | ]
|
222 | 226 | },
|
223 | 227 | {
|
|
226 | 230 | "id": "18",
|
227 | 231 | "metadata": {},
|
228 | 232 | "outputs": [],
|
| 233 | + "source": [ |
| 234 | + "print(zphys.pdf.__all__)" |
| 235 | + ] |
| 236 | + }, |
| 237 | + { |
| 238 | + "cell_type": "code", |
| 239 | + "execution_count": null, |
| 240 | + "id": "19", |
| 241 | + "metadata": {}, |
| 242 | + "outputs": [], |
229 | 243 | "source": [
|
230 | 244 | "# create a PDF\n",
|
231 | 245 | "pdf = zfit.pdf.Gauss(\n",
|
|
240 | 254 | {
|
241 | 255 | "cell_type": "code",
|
242 | 256 | "execution_count": null,
|
243 |
| - "id": "19", |
| 257 | + "id": "20", |
244 | 258 | "metadata": {},
|
245 | 259 | "outputs": [],
|
246 | 260 | "source": [
|
|
251 | 265 | {
|
252 | 266 | "cell_type": "code",
|
253 | 267 | "execution_count": null,
|
254 |
| - "id": "20", |
| 268 | + "id": "21", |
255 | 269 | "metadata": {},
|
256 | 270 | "outputs": [],
|
257 | 271 | "source": [
|
|
261 | 275 | },
|
262 | 276 | {
|
263 | 277 | "cell_type": "markdown",
|
264 |
| - "id": "21", |
| 278 | + "id": "22", |
265 | 279 | "metadata": {},
|
266 | 280 | "source": [
|
267 | 281 | "## Loss and minimizer\n",
|
|
281 | 295 | {
|
282 | 296 | "cell_type": "code",
|
283 | 297 | "execution_count": null,
|
284 |
| - "id": "22", |
| 298 | + "id": "23", |
285 | 299 | "metadata": {},
|
286 | 300 | "outputs": [],
|
287 | 301 | "source": [
|
|
294 | 308 | {
|
295 | 309 | "cell_type": "code",
|
296 | 310 | "execution_count": null,
|
297 |
| - "id": "23", |
| 311 | + "id": "24", |
298 | 312 | "metadata": {},
|
299 | 313 | "outputs": [],
|
300 | 314 | "source": [
|
|
304 | 318 | },
|
305 | 319 | {
|
306 | 320 | "cell_type": "markdown",
|
307 |
| - "id": "24", |
| 321 | + "id": "25", |
308 | 322 | "metadata": {},
|
309 | 323 | "source": [
|
310 | 324 | "## Result\n",
|
|
317 | 331 | {
|
318 | 332 | "cell_type": "code",
|
319 | 333 | "execution_count": null,
|
320 |
| - "id": "25", |
| 334 | + "id": "26", |
321 | 335 | "metadata": {},
|
322 | 336 | "outputs": [],
|
323 | 337 | "source": [
|
|
330 | 344 | {
|
331 | 345 | "cell_type": "code",
|
332 | 346 | "execution_count": null,
|
333 |
| - "id": "26", |
| 347 | + "id": "27", |
334 | 348 | "metadata": {},
|
335 | 349 | "outputs": [],
|
336 | 350 | "source": [
|
|
341 | 355 | },
|
342 | 356 | {
|
343 | 357 | "cell_type": "markdown",
|
344 |
| - "id": "27", |
| 358 | + "id": "28", |
345 | 359 | "metadata": {},
|
346 | 360 | "source": [
|
347 | 361 | "## Serialization\n",
|
|
357 | 371 | {
|
358 | 372 | "cell_type": "code",
|
359 | 373 | "execution_count": null,
|
360 |
| - "id": "28", |
| 374 | + "id": "29", |
361 | 375 | "metadata": {},
|
362 | 376 | "outputs": [],
|
363 | 377 | "source": [
|
|
368 | 382 | {
|
369 | 383 | "cell_type": "code",
|
370 | 384 | "execution_count": null,
|
371 |
| - "id": "29", |
| 385 | + "id": "30", |
372 | 386 | "metadata": {},
|
373 | 387 | "outputs": [],
|
374 | 388 | "source": [
|
|
380 | 394 | },
|
381 | 395 | {
|
382 | 396 | "cell_type": "markdown",
|
383 |
| - "id": "30", |
| 397 | + "id": "31", |
384 | 398 | "metadata": {},
|
385 | 399 | "source": [
|
386 | 400 | "## Parameters as arguments\n",
|
|
393 | 407 | {
|
394 | 408 | "cell_type": "code",
|
395 | 409 | "execution_count": null,
|
396 |
| - "id": "31", |
| 410 | + "id": "32", |
397 | 411 | "metadata": {},
|
398 | 412 | "outputs": [],
|
399 | 413 | "source": [
|
|
408 | 422 | {
|
409 | 423 | "cell_type": "code",
|
410 | 424 | "execution_count": null,
|
411 |
| - "id": "32", |
| 425 | + "id": "33", |
412 | 426 | "metadata": {},
|
413 | 427 | "outputs": [],
|
414 | 428 | "source": [
|
|
431 | 445 | {
|
432 | 446 | "cell_type": "code",
|
433 | 447 | "execution_count": null,
|
434 |
| - "id": "33", |
| 448 | + "id": "34", |
435 | 449 | "metadata": {},
|
436 | 450 | "outputs": [],
|
437 | 451 | "source": [
|
|
444 | 458 | {
|
445 | 459 | "cell_type": "code",
|
446 | 460 | "execution_count": null,
|
447 |
| - "id": "34", |
| 461 | + "id": "35", |
448 | 462 | "metadata": {},
|
449 | 463 | "outputs": [],
|
450 | 464 | "source": [
|
451 | 465 | "# creating a PDF looks also different, but here we use the name of the parametrization and the axis (integers)\n",
|
| 466 | + "\n", |
| 467 | + "\n", |
452 | 468 | "class MyGauss2D(zfit.pdf.ZPDF):\n",
|
453 | 469 | " _PARAMS = (\"mu\", \"sigma\")\n",
|
454 | 470 | " _N_OBS = 2\n",
|
|
465 | 481 | {
|
466 | 482 | "cell_type": "code",
|
467 | 483 | "execution_count": null,
|
468 |
| - "id": "35", |
| 484 | + "id": "36", |
469 | 485 | "metadata": {},
|
470 | 486 | "outputs": [],
|
471 | 487 | "source": [
|
|
476 | 492 | {
|
477 | 493 | "cell_type": "code",
|
478 | 494 | "execution_count": null,
|
479 |
| - "id": "36", |
| 495 | + "id": "37", |
480 | 496 | "metadata": {},
|
481 | 497 | "outputs": [],
|
482 | 498 | "source": []
|
|
0 commit comments