-
Notifications
You must be signed in to change notification settings - Fork 1
/
draw.c
391 lines (342 loc) · 20.8 KB
/
draw.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
#include <string.h>
#include <stdlib.h>
#include <tonc.h>
#include "../globals.h"
#include "../commondefs.h"
#include "../math.h"
#include "../logutils.h"
#include "../model.h"
#include "draw.h"
#include "clipping.h"
#include "rasteriser.h"
#define RASTERPOINT_IN_BOUNDS_M5(vert) (vert.x >= 0 && vert.x < M5_SCALED_W && vert.y >= 0 && vert.y < M5_SCALED_H)
#define BEHIND_NEAR(vert) (vert.z > -cam->near ) // True if the Vec3 is behind the near plane of the camera (i.e. invisible).
#define BEYOND_FAR(vert) (vert.z < -cam->far)
#define DRAW_MAX_TRIANGLES 512
EWRAM_DATA static RasterTriangle screenTriangles[DRAW_MAX_TRIANGLES];
static int screenTriangleCount = 0;
/*
With an ordering table, we can avoid expensive sorting. Basically just an array containing linked lists for each depth value.
We sacrifice memory usage (and accuracy, i.e. Polygons which are a certain cutoff distance from each other are drawn in indeterminate order, but it should not matter) for speed.
cf. http://psx.arthus.net/sdk/Psy-Q/DOCS/TECHNOTE/ordtbl.pdf (last retrieved 2021-07-09)
*/
#define OT_SIZE 512
// We assume an .8 fixed point representation of our depth values; we calculate the index by converting to .1 fixed point, which means at a z-value of OT_SIZE/2 (integer) we have a index of OT_SIZE
#define MAX_Z (OT_SIZE / 2 - 1)
static RasterTriangle *orderingTable[OT_SIZE]; // TODO: We might have to put this into EWRAM to save space in IWRAM...
static int perfFill, perfModelProcessing, perfTotal, perfProject;
/*
Scaling using the affine background capabilities of the GBA.
We use Mode 5 (160x128) with an "internal/logical" resolution of 160x100 scaled to fit the
240x160 (factor 1.5) screen of the GBA (with 5px letterboxes on the top and bottom).
*/
void setDispScaleM5Scaled(void)
{
FIXED threeHalfInv = 170; // 170 is about (3/2)^-1 in .8 fixed point.
AFF_SRC_EX asx= {
.alpha=0,
.sx=threeHalfInv,
.sy=threeHalfInv,
.scr_x=0,
.scr_y=5, // Vertical letterboxing.
.tex_x=0,
.tex_y=0
};
BG_AFFINE bgaff;
bg_rotscale_ex(&bgaff, &asx);
REG_BG_AFFINE[2]= bgaff;
}
void resetDispScale(void)
{
BG_AFFINE bgaff;
bg_aff_identity(&bgaff);
AFF_SRC_EX asx= {
.alpha=0,
.sx=int2fx(1),
.sy=int2fx(1),
.scr_x=0,
.scr_y=0, // (TODO: this was -5 "to reset vertical letterboxing", no idea why I did that...)
.tex_x=0,
.tex_y=0
};
bg_rotscale_ex(&bgaff, &asx);
REG_BG_AFFINE[2]= bgaff;
}
void setM4Pal(COLOR *pal, int n)
{
u16 *dst= pal_bg_mem;
for(int i=0; i < n; ++i)
dst[i]= pal[i];
}
static void updateMode(void)
{
if (vid_page == vid_mem_front) { // If the front page (vid_mem_front) is the current write-page, we have to indicate that the back page is the displayed page by setting DCNT_PAGE.
REG_DISPCNT = g_mode | DCNT_BG2 | DCNT_PAGE;
} else { // The current write page is the back page, so we display the front page (which happens by default if we don't set DCNT_PAGE).
REG_DISPCNT = g_mode | DCNT_BG2;
}
// cf. https://gist.github.com/zeichensystem/0729edcddf8f24db14e5b1b4ef4c0c3f (last retrieved 2021-05-23)
}
void videoM5ScaledInit(void)
{
g_mode = DCNT_MODE5;
updateMode();
setDispScaleM5Scaled();
}
void videoM4Init(void)
{
g_mode = DCNT_MODE4;
updateMode();
resetDispScale();
}
IWRAM_CODE_ARM void m5ScaledFill(COLOR clr)
{
memset32(vid_page, dup16(clr), ((M5_SCALED_H-0) * M5_SCALED_W)/2);
}
void drawInit(void)
{
REG_DISPCNT = g_mode | DCNT_BG2;
txt_init_std();
perfFill = performanceDataRegister("draw.c: rasterisation");
perfModelProcessing = performanceDataRegister("draw:c pre-rasterisation");
perfTotal = performanceDataRegister("draw.c: total");
perfProject = performanceDataRegister("draw.c: drawModelInstance perspective");
}
IWRAM_CODE_ARM void drawBefore(Camera *cam)
{
cameraComputeWorldToCamSpace(cam);
}
IWRAM_CODE_ARM void drawPoints(const Camera *cam, Vec3 *points, int num, COLOR clr)
{
for (int i = 0; i < num; ++i) {
Vec3 pointCamSpace = vecTransformed(cam->world2cam, points[i]);
if (BEHIND_NEAR(pointCamSpace) || BEYOND_FAR(pointCamSpace)) {
continue;
}
FIXED const z = -pointCamSpace.z;
FIXED pre_divide_x = fxmul(cam->perspFacX, pointCamSpace.x);
if (pre_divide_x < -z || pre_divide_x > z ) {// Check if the point is to the left/right of the viewing frustum before dividing (to save unnecessary divisions in those cases).
continue;
}
FIXED pre_divide_y = fxmul(cam->perspFacY, pointCamSpace.y);
if (pre_divide_y < -z|| pre_divide_y > z ) { // Check if the point is to the top/bottom of the viewing frustum.
continue;
}
RasterPoint rp = {
.x=fx2int( fxmul(cam->viewportTransFacX, fxdiv(pre_divide_x, z)) + cam->viewportTransAddX ),
.y=fx2int( fxmul(cam->viewportTransFacY, fxdiv(pre_divide_y, z)) + cam->viewportTransAddY )
};
if (RASTERPOINT_IN_BOUNDS_M5(rp)) {
m5_plot(rp.x, rp.y, clr);
}
}
}
IWRAM_CODE_ARM void drawTriangleWireframe(const RasterTriangle *tri)
{
// (This function is pretty slow for some reason. FIXME please.)
if (!RASTERPOINT_IN_BOUNDS_M5(tri->vert[0]) || !RASTERPOINT_IN_BOUNDS_M5(tri->vert[1]) || !RASTERPOINT_IN_BOUNDS_M5(tri->vert[2])) { // We have to clip against the screen.
for (int j = 0; j < 3; ++j) {
int nextIdx = (j + 1) < 3 ? j + 1 : 0;
RasterPoint a = tri->vert[j];
RasterPoint b = tri->vert[nextIdx];
if (clipLineCohenSutherland(&a, &b)) {
m5_line(a.x, a.y, b.x, b.y, tri->color);
}
}
} else { // No clipping necessary.
for (int j = 0; j < 3; ++j) {
int nextIdx = (j + 1) < 3 ? j + 1 : 0;
m5_line(tri->vert[j].x, tri->vert[j].y, tri->vert[nextIdx].x,tri-> vert[nextIdx].y, tri->color);
}
}
}
/*
C does not have closures, but we got macros!
I'm sorry.
*/
#define INSTANCE_CALC_LIGHTDIR_AND_ATTENUATION() \
PolygonShadingType instanceShading = instance->state.shading; \
Vec3 lightDir; \
FIXED attenuation = -1; \
if (instanceShading == SHADING_FLAT_LIGHTING) { \
if (lightDat.type == LIGHT_POINT) { \
Vec3 dir = vecSub(*lightDat.light.point, instance->state.pos); \
if (lightDat.attenuation != NULL) { \
/* http://wiki.ogre3d.org/tiki-index.php?page=-Point+Light+Attenuation (last retrieved 2021-05-12) */ \
FIXED d = vecMag(dir); \
attenuation = fxdiv(int2fx(1), int2fx(1) + fxmul(d, lightDat.attenuation->linear) + fxmul(fxmul(d, d), lightDat.attenuation->quadratic) ); \
} \
lightDir = vecUnit(dir); \
} else if (lightDat.type == LIGHT_DIRECTIONAL) { \
lightDir = *lightDat.light.directional; \
lightDir.x = -lightDir.x; lightDir.y = -lightDir.y; lightDir.z = -lightDir.z; /* Invert the direction. */ \
} else { \
panic("draw.c: drawModelInstaces: Missing lighting vectors."); \
} \
} \
#define FACE_CALC_COLOR() { \
if (instanceShading == SHADING_FLAT_LIGHTING) { \
const FIXED lightAlpha = vecDot(lightDir, triNormal); \
if (lightAlpha > 0) { \
COLOR shade = fx2int(fxmul(lightAlpha, int2fx(31))); \
if (attenuation != -1) { \
shade = fx2int(fxmul(attenuation, int2fx(shade))); \
} \
shade = MIN(MAX(1, shade), 31); \
screenTri.color = RGB15(shade, shade, shade); \
} else { \
screenTri.color = RGB15(1,1,1); \
} \
} else if (instanceShading == SHADING_FLAT || instanceShading == SHADING_WIREFRAME) { \
screenTri.color = face.color; \
} else { \
panic("draw.c: drawModelInstances: Unknown shading option."); \
} \
} \
INLINE void otInsert(RasterTriangle *t)
{
int idx = ABS(t->centroidZ) >> (FIX_SHIFT - 1); // We have a granularity of 0.5; polygons that have a smaller z-distance will be drawn in indeterminate order.
assertion(idx < OT_SIZE && idx >= 0, "draw.c: otInsert: idx < OT_SIZE");
if (orderingTable[idx]) {
t->next = orderingTable[idx];
} else {
t->next = NULL;
}
orderingTable[idx] = t;
}
// We put it outside of "modelInstancesPrepareDraw" to not exhaust the stack (I think). Will be slower I think. Ugh.
static EWRAM_DATA Vec3 vertsCamSpace[MAX_MODEL_VERTS];
static EWRAM_DATA Vec3 vertsWorldSpace[MAX_MODEL_VERTS];
static EWRAM_DATA RasterPoint vertsProjected[MAX_MODEL_VERTS];
/*
Performs model to camera space transformations, perspective projection, and shading/lighting calculations.
Calculates the screen-space triangles which can be drawn later. We put them into the ordering table, so we don't have to sort them.
*/
IWRAM_CODE_ARM static void modelInstancesPrepareDraw(Camera* cam, ModelInstance *instances, int numInstances, ModelDrawLightingData lightDat)
{
for (int instanceNum = 0; instanceNum < numInstances; ++instanceNum) {
ModelInstance *instance = instances + instanceNum;
if (instance->isEmpty) {
continue;
}
// TODO: Insert bounding-sphere culling here.
FIXED instanceRotMat[16];
matrix4x4createYawPitchRoll(instanceRotMat, instance->state.yaw, instance->state.pitch, instance->state.roll);
for (int i = 0; i < instance->state.mod.numVerts; ++i) {
// Model space to world space:
vertsCamSpace[i].x = fxmul(instance->state.mod.verts[i].x, instance->state.scale.x);
vertsCamSpace[i].y = fxmul(instance->state.mod.verts[i].y, instance->state.scale.y);
vertsCamSpace[i].z = fxmul(instance->state.mod.verts[i].z, instance->state.scale.z);
vecTransform(instanceRotMat, vertsCamSpace + i );
// We translate manually so that instanceRotMat stays as is (so we can rotate our normals with the instanceRotMat in model space to calculate lighting):
vertsCamSpace[i].x += instance->state.pos.x;
vertsCamSpace[i].y += instance->state.pos.y;
vertsCamSpace[i].z += instance->state.pos.z;
vertsWorldSpace[i] = vertsCamSpace[i];
vecTransform(cam->world2cam, vertsCamSpace + i); // And finally, we're in camera space.
if (BEHIND_NEAR(vertsCamSpace[i]) || BEYOND_FAR(vertsCamSpace[i])) {
vertsProjected[i].x = RASTER_POINT_NEAR_FAR_CULL;
vertsProjected[i].y = RASTER_POINT_NEAR_FAR_CULL;
} else {
// Perspective projection and screen space transform; we do it manually instead of just calling vecTransformed(cam->perspMat, vertsCamSpace[i]) for performance (for my test case with 414 triangles: 20.2 ms vs 24.4 ms)
const FIXED z = vertsCamSpace[i].z;
// vertsProjected[i].x = ( ((cam->viewportTransFacX * (cam->perspFacX * vertsCamSpace[i].x / -z)) >> FIX_SHIFT) + cam->viewportTransAddX) >> FIX_SHIFT; (not much faster)
vertsProjected[i].x = fx2int( fxmul(cam->viewportTransFacX, fxdiv(fxmul(cam->perspFacX, vertsCamSpace[i].x), -z) ) + cam->viewportTransAddX );
vertsProjected[i].y = fx2int( fxmul(cam->viewportTransFacY, fxdiv(fxmul(cam->perspFacY, vertsCamSpace[i].y), -z) ) + cam->viewportTransAddY );
}
}
// Calculate lightDir and attenuation (which don't depend on the faces, only on the instance) so we don't have to re-compute them redundantly in the inner loop over the faces.
INSTANCE_CALC_LIGHTDIR_AND_ATTENUATION();
const bool backfaceCulling = instance->state.backfaceCulling;
for (int faceNum = 0; faceNum < instance->state.mod.numFaces; ++faceNum) { // For each face (triangle, really) of the ModelInstace.
const Face face = instance->state.mod.faces[faceNum];
// Backface culling (assumes a counter-clockwise winding order):
// const Vec3 a = vecSub(vertsCamSpace[face.vertexIndex[1]], vertsCamSpace[face.vertexIndex[0]]);
// const Vec3 b = vecSub(vertsCamSpace[face.vertexIndex[2]], vertsCamSpace[face.vertexIndex[0]]);
// const Vec3 triNormal = vecCross(b, a);
// const Vec3 camToTri = vertsCamSpace[face.vertexIndex[2]];
// Backface culling (with face normals, winding order does not matter):
const Vec3 triNormal = vecTransformedRot(instanceRotMat, &face.normal);
if (backfaceCulling) {
const Vec3 camToTri = vecSub(cam->pos, vertsWorldSpace[face.vertexIndex[0]]);
if (vecDot(triNormal, camToTri) <= 0) { // If the angle between camera and normal is not between 90 degs and 270 degs, the face is invisible and to be culled.
continue;
}
}
RasterTriangle screenTri;
for (int i = 0; i < 3; ++i) {
screenTri.vert[i] = vertsProjected[face.vertexIndex[i]];
if (screenTri.vert[i].x == RASTER_POINT_NEAR_FAR_CULL && screenTri.vert[i].y == RASTER_POINT_NEAR_FAR_CULL) { // If the face is partly behind the near or far plane, cull the whole (we don't bother with clipping).
goto skipFace;
}
}
// Check if all vertices of the face are to the "outside-side" of a given clipping plane. If so, the face is invisible and we can skip it.
if (screenTri.vert[0].x < 0 && screenTri.vert[1].x < 0 && screenTri.vert[2].x < 0) { // All vertices are to the left of the left-plane.
continue;
} else if (screenTri.vert[0].x >= M5_SCALED_W && screenTri.vert[1].x >= M5_SCALED_W && screenTri.vert[2].x >= M5_SCALED_W ) { // All vertices are to the right of the right-plane.
continue;
} else if (screenTri.vert[0].y < 0 && screenTri.vert[1].y < 0 && screenTri.vert[2].y < 0) { // All vertices are to the top of the top-plane.
continue;
} else if (screenTri.vert[0].y >= M5_SCALED_H && screenTri.vert[1].y >= M5_SCALED_H && screenTri.vert[2].y >= M5_SCALED_H) { // All vertices are to the bottom of the bottom-plane.
continue;
}
FACE_CALC_COLOR();
screenTri.shading = instance->state.shading;
screenTri.centroidZ = fxdiv(vertsCamSpace[face.vertexIndex[0]].z + vertsCamSpace[face.vertexIndex[1]].z + vertsCamSpace[face.vertexIndex[2]].z, int2fx(3));
assertion(screenTriangleCount < DRAW_MAX_TRIANGLES, "draw.c: drawModelInstances: screenTriangleCount < DRAW_MAX_TRIANGLES");
screenTriangles[screenTriangleCount++] = screenTri;
otInsert(screenTriangles + (screenTriangleCount - 1));
skipFace:;
}
}
}
#undef INSTANCE_CALC_LIGHTDIR_AND_ATTENUATION
#undef FACE_CALC_COLOR
// static int triangleDepthCmp(const void *a, const void *b)
// {
// (We don't need to sort the triangles, we use an ordering table. Just left as a comment for reference.)
// RasterTriangle *triA = (RasterTriangle*)a;
// RasterTriangle *triB = (RasterTriangle*)b;
// return triA->centroidZ - triB->centroidZ; // Smaller/"more negative" z values mean the triangle is farther away from the camera.
// }
IWRAM_CODE_ARM void drawModelInstancePools(ModelInstancePool *pools, int numPools, Camera *cam, ModelDrawLightingData lightDat)
{
performanceStart(perfTotal);
for (int i= 0; i < OT_SIZE; ++i) {
orderingTable[i] = NULL;
}
screenTriangleCount = 0;
performanceStart(perfModelProcessing);
for (int i = 0; i < numPools; ++i) {
modelInstancesPrepareDraw(cam, pools[i].instances, pools[i].POOL_CAPACITY, lightDat);
}
performanceEnd(perfModelProcessing);
// qsort(screenTriangles, screenTriangleCount, sizeof screenTriangles[0], triangleDepthCmp);
if (screenTriangleCount == 0) {
goto skipOT;
}
int trisToDraw = screenTriangleCount;
for (int i = OT_SIZE - 1; i >= 0 && trisToDraw; --i) { // Draw triangles from back to front by iterating over the ordering-table.
for (RasterTriangle *t = orderingTable[i]; t != NULL; t = t->next) {
--trisToDraw;
if (t->shading == SHADING_FLAT || t->shading == SHADING_FLAT_LIGHTING) {
drawTriangleFlatByggmastar(t);
} else {
drawTriangleWireframe(t);
}
}
}
skipOT:;
performanceEnd(perfTotal);
#ifdef DEBUG_PRINT
char dbg[64];
snprintf(dbg, sizeof(dbg), "tris: %d", screenTriangleCount);
m5_puts(8, 24, dbg, CLR_FUCHSIA);
#endif
}
// RasterTriangle tri; // Debug.
// tri.color = CLR_WHITE;
// tri.vert[0] = (RasterPoint){.x=0, .y=0};
// tri.vert[1] = (RasterPoint){.x=60, .y=100};
// tri.vert[2] = (RasterPoint){.x=0, .y=100};
// drawTriangleFlatByggmastar(&tri);