forked from thunlp/OpenAttack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadversarial_training.py
138 lines (120 loc) · 5.31 KB
/
adversarial_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
'''
This example code shows how to conduct adversarial training to improve the robustness of a sentiment analysis model.
The most important part is the "attack()" function, in which adversarial examples are easily generated with an API "attack_eval.generate_adv()"
'''
import OpenAttack
import torch
# Design a feedforward neural network as the the victim sentiment analysis model
def make_model(vocab_size):
"""
see `tutorial - pytorch <https://pytorch.org/tutorials/beginner/text_sentiment_ngrams_tutorial.html#define-the-model>`__
"""
import torch.nn as nn
class TextSentiment(nn.Module):
def __init__(self, vocab_size, embed_dim=32, num_class=2):
super().__init__()
self.embedding = nn.EmbeddingBag(vocab_size, embed_dim)
self.fc = nn.Linear(embed_dim, num_class)
self.softmax = nn.Softmax(dim=1)
self.init_weights()
def init_weights(self):
initrange = 0.5
self.embedding.weight.data.uniform_(-initrange, initrange)
self.fc.weight.data.uniform_(-initrange, initrange)
self.fc.bias.data.zero_()
def forward(self, text):
embedded = self.embedding(text, None)
return self.softmax(self.fc(embedded))
return TextSentiment(vocab_size)
# Choose SST-2 as the dataset
def prepare_data():
vocab = {
"<UNK>": 0,
"<PAD>": 1
}
train, valid, test = OpenAttack.loadDataset("SST")
tp = OpenAttack.text_processors.DefaultTextProcessor()
for dataset in [train, valid, test]:
for inst in dataset:
inst.tokens = list(map(lambda x:x[0], tp.get_tokens(inst.x)))
for token in inst.tokens:
if token not in vocab:
vocab[token] = len(vocab)
return train, valid, test, vocab
# Batch data
def make_batch(data, vocab):
batch_x = [
[
vocab[token] if token in vocab else vocab["<UNK>"]
for token in inst.tokens
] for inst in data
]
max_len = max( [len(inst.tokens) for inst in data] )
batch_x = [
sentence + [vocab["<PAD>"]] * (max_len - len(sentence))
for sentence in batch_x
]
batch_y = [
inst.y for inst in data
]
return torch.LongTensor(batch_x), torch.LongTensor(batch_y)
# Train the victim model for one epoch
def train_epoch(model, dataset, vocab, batch_size=128, learning_rate=5e-3):
dataset = dataset.shuffle().reset_index()
model.train()
criterion = torch.nn.NLLLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
avg_loss = 0
for start in range(0, len(dataset), batch_size):
train_x, train_y = make_batch(dataset[start: start + batch_size], vocab)
pred = model(train_x)
loss = criterion(pred.log(), train_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
avg_loss += loss.item()
return avg_loss / len(dataset)
# Train the victim model and conduct evaluation
def train_model(model, data_train, data_valid, vocab, num_epoch=10):
mx_acc = None
mx_model = None
for i in range(num_epoch):
loss = train_epoch(model, data_train, vocab)
clsf = OpenAttack.PytorchClassifier(model, word2id=vocab)
accuracy = len(data_valid.eval(clsf).correct()) / len(data_valid)
print("Epoch %d: loss: %lf, accuracy %lf" % (i, loss, accuracy))
if mx_acc is None or mx_acc < accuracy:
mx_model = model.state_dict()
model.load_state_dict(mx_model)
return model
# Launch adversarial attacks and generate adversarial examples
def attack(classifier, dataset, attacker = OpenAttack.attackers.PWWSAttacker()):
attack_eval = OpenAttack.attack_evals.DefaultAttackEval(
attacker = attacker,
classifier = classifier,
success_rate = True
)
correct_samples = dataset.eval(classifier).correct()
accuracy = len(correct_samples) / len(dataset)
adversarial_samples = attack_eval.generate_adv(correct_samples)
attack_success_rate = attack_eval.get_result()["Attack Success Rate"]
print("Accuracy: %lf%%\nAttack success rate: %lf%%" % (accuracy * 100, attack_success_rate * 100))
tp = OpenAttack.text_processors.DefaultTextProcessor()
for inst in adversarial_samples:
inst.tokens = list(map(lambda x:x[0], tp.get_tokens(inst.x)))
return adversarial_samples
def main():
print("Loading data")
train, valid, test, vocab = prepare_data() # Load dataset
model = make_model(len(vocab)) # Design a victim model
print("Training")
trained_model = train_model(model, train, valid, vocab) # Train the victim model
print("Generating adversarial samples (this step will take dozens of minutes)")
clsf = OpenAttack.PytorchClassifier(trained_model, word2id=vocab) # Wrap the victim model
adversarial_samples = attack(clsf, train) # Conduct adversarial attacks and generate adversarial examples
print("Adversarially training classifier")
finetune_model = train_model(trained_model, train + adversarial_samples, valid, vocab) # Retrain the classifier with additional adversarial examples
print("Testing enhanced model (this step will take dozens of minutes)")
attack(clsf, train) # Re-attack the victim model to measure the effect of adversarial training
if __name__ == '__main__':
main()