forked from gvtulder/elasticdeform
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_deform_grid.py
554 lines (468 loc) · 25.3 KB
/
test_deform_grid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
import os
import numpy as np
import scipy.ndimage
import unittest
import itertools
try:
import tensorflow as tf
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
except Exception as e:
print(e)
tf = None
try:
import torch
except Exception as e:
print(e)
torch = None
import elasticdeform
if tf is not None:
import elasticdeform.tf as etf
if torch is not None:
import elasticdeform.torch as etorch
# Python implementation
def deform_grid_py(X, displacement, order=3, mode='constant', cval=0.0, crop=None, prefilter=True, axis=None):
if axis is None:
axis = tuple(range(X.ndim))
elif isinstance(axis, int):
axis = (axis,)
# compute number of control points in each dimension
points = [displacement[0].shape[d] for d in range(len(axis))]
# creates the grid of coordinates of the points of the image (an ndim array per dimension)
coordinates = np.meshgrid(*[np.arange(X.shape[d]) for d in axis], indexing='ij')
# creates the grid of coordinates of the points of the image in the "deformation grid" frame of reference
xi = np.meshgrid(*[np.linspace(0, p - 1, X.shape[d]) for d, p in zip(axis, points)], indexing='ij')
if crop is not None:
coordinates = [c[crop] for c in coordinates]
xi = [x[crop] for x in xi]
# crop is given only for the axes in axis, convert to all dimensions for the output
crop = tuple(crop[axis.index(i)] if i in axis else slice(None) for i in range(X.ndim))
else:
crop = (slice(None),) * X.ndim
# add the displacement to the coordinates
for i in range(len(axis)):
yd = scipy.ndimage.map_coordinates(displacement[i], xi, order=3)
# adding the displacement
coordinates[i] = np.add(coordinates[i], yd)
out = np.zeros(X[crop].shape, dtype=X.dtype)
# iterate over the non-deformed axes
iter_axes = [range(X.shape[d]) if d not in axis else [slice(None)]
for d in range(X.ndim)]
for a in itertools.product(*iter_axes):
scipy.ndimage.map_coordinates(X[a], coordinates, output=out[a],
order=order, cval=cval, mode=mode, prefilter=prefilter)
return out
# C implementation wrapper
def deform_grid_c(X_in, displacement, order=3, mode='constant', cval=0.0, crop=None, prefilter=True, axis=None, affine=None, rotate=None, zoom=None):
return elasticdeform.deform_grid(X_in, displacement, order, mode, cval, crop, prefilter, axis, affine, rotate, zoom)
def deform_grid_gradient_c(X_in, displacement, order=3, mode='constant', cval=0.0, crop=None, prefilter=True, axis=None, X_shape=None, affine=None, rotate=None, zoom=None):
return elasticdeform.deform_grid_gradient(X_in, displacement, order, mode, cval, crop, prefilter, axis, X_shape, affine, rotate, zoom)
class TestDeformGrid(unittest.TestCase):
def test_random(self):
for points in (3, (3, 5)):
for shape in ((100, 100), (100, 75)):
for order in (0, 1, 2, 3, 4):
X = np.random.rand(*shape)
elasticdeform.deform_random_grid(X, points=points)
def test_basic_2d(self):
for points in ((3, 3), (3, 5), (1, 5)):
for shape in ((100, 100), (100, 75)):
for order in (0, 1, 2, 3, 4):
for mode in ('nearest', 'wrap', 'reflect', 'mirror', 'constant'):
self.run_comparison(shape, points, order=order, mode=mode)
def test_basic_3d(self):
for points in ((3, 3, 3), (3, 5, 7), (1, 3, 5)):
for shape in ((50, 50, 50), (100, 50, 25)):
for order in (0, 1, 2, 3, 4):
self.run_comparison(shape, points, order=order)
def test_crop_2d(self):
points = (3, 3)
shape = (100, 100)
for crop in ((slice(0, 50), slice(0, 50)),
(slice(20, 60), slice(20, 60)),
(slice(50, 100), slice(50, 100))):
for order in (0, 1, 2, 3, 4):
self.run_comparison(shape, points, crop=crop, order=order)
def test_crop_3d(self):
points = (3, 3, 5)
shape = (25, 25, 25)
order = 3
for crop in ((slice(15, 25), slice(None), slice(None)),):
self.run_comparison(shape, points, crop=crop, order=order)
def test_crop_rotate_zoom(self):
points = (3, 3)
shape = (100, 100)
# keep the center of the output in the same place before and after cropping
crop = (slice(10, 90), slice(20, 80))
for rotate in (-30, 0, 30, None):
for zoom in (0.5, 1.0, 1.5, None):
for affine in (None, np.eye(3)):
X = np.random.rand(*shape)
displacement = np.random.randn(2, *points) * 3
no_crop = deform_grid_c(X, displacement, rotate=rotate, zoom=zoom, affine=affine)
with_crop = deform_grid_c(X, displacement, rotate=rotate, zoom=zoom, crop=crop, affine=affine)
np.testing.assert_array_almost_equal(no_crop[crop], with_crop)
def test_multi_2d(self):
points = (3, 3)
shape = (100, 75)
sigma = 25
for order in (0, 1, 2, 3, 4, [0, 3]):
for crop in (None, (slice(15, 25), slice(15, 50))):
for cval in (0.0, 1.0, [0.0, 1.0]):
for mode in ('constant', ['constant', 'reflect']):
# generate random displacement vector
displacement = np.random.randn(len(shape), *points) * sigma
# generate random data
X = np.random.rand(*shape).astype('float64')
# generate more random data, force a different data type
Y = np.random.rand(*shape).astype('float32')
# test and compare
order_list = order if isinstance(order, list) else [order] * 2
mode_list = mode if isinstance(mode, list) else [mode] * 2
cval_list = cval if isinstance(cval, list) else [cval] * 2
res_X_ref = deform_grid_py(X, displacement, order=order_list[0], crop=crop, cval=cval_list[0], mode=mode_list[0])
res_Y_ref = deform_grid_py(Y, displacement, order=order_list[1], crop=crop, cval=cval_list[1], mode=mode_list[1])
[res_X_test, res_Y_test] = deform_grid_c([X, Y], displacement, order=order, crop=crop, cval=cval, mode=mode)
np.testing.assert_array_almost_equal(res_X_ref, res_X_test)
np.testing.assert_array_almost_equal(res_Y_ref, res_Y_test)
def test_multi_3d(self):
points = (3, 3, 3)
shape = (25, 25, 30)
sigma = 25
for order in (0, 1, 2, 3, 4):
for crop in (None, (slice(15, 20), slice(15, 25), slice(2, 10))):
# generate random displacement vector
displacement = np.random.randn(len(shape), *points) * sigma
# generate random data
X = np.random.rand(*shape)
# generate more random data
Y = np.random.rand(*shape)
# test and compare
res_X_ref = deform_grid_py(X, displacement, order=order, crop=crop)
res_Y_ref = deform_grid_py(Y, displacement, order=order, crop=crop)
[res_X_test, res_Y_test] = deform_grid_c([X, Y], displacement, order=order, crop=crop)
np.testing.assert_array_almost_equal(res_X_ref, res_X_test)
np.testing.assert_array_almost_equal(res_Y_ref, res_Y_test)
def test_different_strides(self):
# test for multiple inputs with unequal strides
shape = (200, 150)
X = np.random.rand(*shape)
Y = np.array(X, order='F')
# the inputs have the same values, but different strides
self.assertNotEqual(X.strides, Y.strides)
displacement = np.random.randn(2, 3, 3) * 25
# test and compare
# disable prefiltering, since that would create new input arrays with equal strides
res_X_ref = deform_grid_py(X, displacement, prefilter=False)
res_Y_ref = deform_grid_py(Y, displacement, prefilter=False)
[res_X_test, res_Y_test] = deform_grid_c([X, Y], displacement, prefilter=False)
def test_axis(self):
self.run_comparison(shape=(30, 20, 3), points=(3, 3), axis=(0, 1))
self.run_comparison(shape=(20, 3, 30), points=(3, 3), axis=(0, 2))
self.run_comparison(shape=(100, 200, 3), points=(3, 3), axis=(0, 1))
self.run_comparison(shape=(200, 3, 100), points=(3, 3), axis=(0, 2))
self.run_comparison(shape=(200, 3, 100, 4), points=(3, 3), axis=(0, 2))
# test multiple inputs, same axes
X = np.random.rand(3, 90, 80, 7)
Y = np.random.rand(7, 90, 80)
displacement = np.random.randn(2, 5, 3) * 25
res_X_ref = deform_grid_py(X, displacement, axis=(1, 2))
res_Y_ref = deform_grid_py(Y, displacement, axis=(1, 2))
res_X_test, res_Y_test = deform_grid_c([X, Y], displacement, axis=(1, 2))
np.testing.assert_array_almost_equal(res_X_ref, res_X_test)
np.testing.assert_array_almost_equal(res_Y_ref, res_Y_test)
# test multiple inputs, different axes
X = np.random.rand(3, 20, 30)
Y = np.random.rand(20, 30)
displacement = np.random.randn(2, 5, 3) * 25
res_X_ref = deform_grid_py(X, displacement, axis=(1, 2))
res_Y_ref = deform_grid_py(Y, displacement, axis=(0, 1))
res_X_test, res_Y_test = deform_grid_c([X, Y], displacement, axis=[(1, 2), (0, 1)])
np.testing.assert_array_almost_equal(res_X_ref, res_X_test)
np.testing.assert_array_almost_equal(res_Y_ref, res_Y_test)
# test multiple inputs, with cropping
X = np.random.rand(3, 90, 80, 7)
Y = np.random.rand(7, 90, 80)
displacement = np.random.randn(2, 5, 3) * 25
for crop in [(slice(30, 50), slice(20, 40)), (slice(0, 30), slice(0, 80))]:
res_X_ref = deform_grid_py(X, displacement, axis=(1, 2), crop=crop)
res_Y_ref = deform_grid_py(Y, displacement, axis=(1, 2), crop=crop)
res_X_test, res_Y_test = deform_grid_c([X, Y], displacement, axis=(1, 2), crop=crop)
np.testing.assert_array_almost_equal(res_X_ref, res_X_test)
np.testing.assert_array_almost_equal(res_Y_ref, res_Y_test)
def test_grad_2d(self):
points = (3, 5)
shape = (30, 25)
for order in (0, 1, 2, 3, 4):
for mode in ('nearest', 'wrap', 'reflect', 'mirror', 'constant'):
X = np.random.rand(*shape)
displacement = np.random.randn(2, *points) * 3
def fn(X):
return deform_grid_c(X, displacement, order=order, mode=mode)
def grad_fn(gY, X):
return deform_grid_gradient_c(gY, displacement, order=order, mode=mode)
self.verify_grad(X, fn, grad_fn, n_tests=5)
def test_grad_crop(self):
points = (3, 3)
shape = (20, 20)
for crop in ((slice(0, 10), slice(0, 10)),
(slice(4, 12), slice(4, 12)),
(slice(10, 20), slice(10, 20))):
X = np.random.rand(*shape)
displacement = np.random.randn(2, *points) * 3
def fn(X):
return deform_grid_c(X, displacement, crop=crop)
def grad_fn(gY, X):
return deform_grid_gradient_c(gY, displacement, crop=crop, X_shape=shape)
self.verify_grad(X, fn, grad_fn)
def test_grad_zoom(self):
points = (3, 5)
shape = (30, 25)
order = 3
mode = 'constant'
for zoom in (0.5, 1.0, 1.5):
X = np.random.rand(*shape)
displacement = np.random.randn(2, *points) * 3
def fn(X):
return deform_grid_c(X, displacement, order=order, mode=mode, zoom=zoom)
def grad_fn(gY, X):
return deform_grid_gradient_c(gY, displacement, order=order, mode=mode, zoom=zoom)
self.verify_grad(X, fn, grad_fn, n_tests=5)
def test_grad_rotate(self):
points = (3, 5)
shape = (30, 25)
order = 3
mode = 'constant'
for rotate in (-20, 0, 20):
X = np.random.rand(*shape)
displacement = np.random.randn(2, *points) * 3
def fn(X):
return deform_grid_c(X, displacement, order=order, mode=mode, rotate=rotate)
def grad_fn(gY, X):
return deform_grid_gradient_c(gY, displacement, order=order, mode=mode, rotate=rotate)
self.verify_grad(X, fn, grad_fn, n_tests=5)
def test_grad_with_list(self):
points = (3, 3)
shape = (100, 75)
sigma = 25
for order in (0, 1, 2, 3, 4, [0, 3]):
for crop in (None, (slice(15, 25), slice(15, 50))):
for cval in (0.0, 1.0, [0.0, 1.0]):
for mode in ('constant', ['constant', 'reflect']):
# generate random displacement vector
displacement = np.random.randn(len(shape), *points) * sigma
# generate random data
X = np.random.rand(*shape).astype('float64')
# generate more random data, force a different data type
Y = np.random.rand(*shape).astype('float32')
# compute forward
Xdeformed, Ydeformed = deform_grid_c([X, Y], displacement, order=order, crop=crop, cval=cval, mode=mode)
# generate random gradients
dXdeformed = np.random.rand(*Xdeformed.shape).astype('float64')
dYdeformed = np.random.rand(*Ydeformed.shape).astype('float32')
# test and compare
order_list = order if isinstance(order, list) else [order] * 2
mode_list = mode if isinstance(mode, list) else [mode] * 2
cval_list = cval if isinstance(cval, list) else [cval] * 2
res_dX_ref = deform_grid_gradient_c(dXdeformed, displacement, order=order_list[0], crop=crop, cval=cval_list[0], mode=mode_list[0], X_shape=X.shape)
res_dY_ref = deform_grid_gradient_c(dYdeformed, displacement, order=order_list[1], crop=crop, cval=cval_list[1], mode=mode_list[1], X_shape=Y.shape)
[res_dX_test, res_dY_test] = deform_grid_gradient_c([dXdeformed, dYdeformed], displacement, order=order, crop=crop, cval=cval, mode=mode, X_shape=[X.shape, Y.shape])
np.testing.assert_array_almost_equal(res_dX_ref, res_dX_test)
np.testing.assert_array_almost_equal(res_dY_ref, res_dY_test)
def verify_grad(self, X, fn, grad_fn, eps=1e-4, n_tests=10):
# test the gradient computed by grad_fn by comparing it with the numeric gradient of fn
output_shape = fn(X).shape
# test for multiple random projections
for t in range(n_tests):
random_projection = np.random.rand(*output_shape) + 0.5
# define a gradient cost function
def cost_fn(x):
return np.sum(fn(x) * random_projection)
# compute baseline result at X
f_x = cost_fn(X)
# initialize input that we can disturb later
X_copy = X.copy()
# iterate over all elements of X and compute the gradient
gx_ref = np.zeros_like(X)
for i in range(X.size):
X_copy[:] = X
X_copy.flat[i] += eps
f_eps = cost_fn(X_copy)
gx_ref.flat[i] = ((f_eps - f_x) / eps)
# now compute the gradient directly using grad_fn
gx_test = grad_fn(random_projection, X)
np.testing.assert_array_almost_equal(gx_ref, gx_test)
def run_comparison(self, shape, points, order=3, sigma=25, crop=None, mode='constant', axis=None):
# generate random displacement vector
displacement = np.random.randn(len(shape) if axis is None else len(axis), *points) * sigma
# generate random data
X = np.random.rand(*shape)
# test and compare
res_ref = deform_grid_py(X, displacement, order=order, crop=crop, mode=mode, axis=axis)
res_test = deform_grid_c(X, displacement, order=order, crop=crop, mode=mode, axis=axis)
np.testing.assert_array_almost_equal(res_ref, res_test)
def test_basic_2d_tensorflow(self):
points = (3, 3)
shape = (100, 100)
for order in (0, 1, 2):
for crop in (None, (slice(20, 80), slice(30, 70))):
for mode in ('nearest', 'wrap', 'reflect', 'mirror', 'constant'):
self.run_comparison_tensorflow(shape, points, order=order, mode=mode, crop=crop)
def test_multi_2d_tensorflow(self):
points = (3, 3)
shape = (100, 75)
sigma = 25
for order in (0, 1, 2, 3, 4, [0, 3]):
for crop in (None, (slice(15, 25), slice(15, 50))):
for cval in (0.0, 1.0, [0.0, 1.0]):
for mode in ('constant', ['constant', 'reflect']):
self.run_comparison_tensorflow_multi(shape, points, order=order, mode=mode, crop=crop)
def run_comparison_tensorflow(self, shape, points, order=3, sigma=25, crop=None, mode='constant', axis=None):
if tf is None or not (hasattr(tf, 'py_func') or hasattr(tf, 'py_function')):
raise unittest.SkipTest("TensorFlow was not loaded.")
# generate random displacement vector
displacement = np.random.randn(len(shape) if axis is None else len(axis), *points) * sigma
# generate random data
X_val = np.random.rand(*shape)
# compute forward reference value
X_deformed_ref = elasticdeform.deform_grid(X_val, displacement, order=order, crop=crop, mode=mode, axis=axis)
# generate gradient
dX_deformed_val = np.random.rand(*X_deformed_ref.shape)
# compute backward reference value
dX_ref = elasticdeform.deform_grid_gradient(dX_deformed_val, displacement, order=order, crop=crop, mode=mode, axis=axis, X_shape=shape)
# compute tensorflow output
if hasattr(tf, 'py_func'):
# TensorFlow 1
# build tensorflow graph
X = tf.Variable(X_val)
dX_deformed = tf.Variable(dX_deformed_val)
X_deformed = etf.deform_grid(X, displacement, order=order, crop=crop, mode=mode, axis=axis)
[dX] = tf.gradients(X_deformed, X, dX_deformed)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
X_deformed_val, dX_val = sess.run([X_deformed, dX])
X_deformed = X_deformed_val
dX = dX_val
else:
# TensorFlow 2
X = tf.Variable(X_val)
dX_deformed = tf.Variable(dX_deformed_val)
with tf.GradientTape() as g:
g.watch(X)
X_deformed = etf.deform_grid(X, displacement, order=order, crop=crop, mode=mode, axis=axis)
dX = g.gradient(X_deformed, X, dX_deformed)
np.testing.assert_almost_equal(X_deformed_ref, X_deformed)
np.testing.assert_almost_equal(dX_ref, dX)
def run_comparison_tensorflow_multi(self, shape, points, order=3, sigma=25, crop=None, mode='constant', axis=None):
if tf is None or not hasattr(tf, 'py_function') or hasattr(tf, 'py_func'):
raise unittest.SkipTest("TensorFlow 2 was not loaded.")
# generate random displacement vector
displacement = np.random.randn(len(shape) if axis is None else len(axis), *points) * sigma
# generate random data
X_val = np.random.rand(*shape)
# generate more random data
Y_val = np.random.rand(*shape)
# compute forward reference value
X_deformed_ref, Y_deformed_ref = elasticdeform.deform_grid([X_val, Y_val],
displacement, order=order, crop=crop, mode=mode, axis=axis)
# generate gradient
dX_deformed_val = np.random.rand(*X_deformed_ref.shape)
dY_deformed_val = np.random.rand(*Y_deformed_ref.shape)
# compute backward reference value
dX_ref, dY_ref = elasticdeform.deform_grid_gradient([dX_deformed_val, dY_deformed_val],
displacement, order=order, crop=crop, mode=mode, axis=axis, X_shape=[shape, shape])
# compute tensorflow output
X = tf.Variable(X_val)
Y = tf.Variable(Y_val)
dX_deformed = tf.Variable(dX_deformed_val)
dY_deformed = tf.Variable(dY_deformed_val)
with tf.GradientTape(persistent=True) as g:
g.watch(X)
g.watch(Y)
X_deformed, Y_deformed = etf.deform_grid([X, Y], displacement, order=order, crop=crop, mode=mode, axis=axis)
dX = g.gradient(X_deformed, X, dX_deformed)
dY = g.gradient(Y_deformed, Y, dY_deformed)
np.testing.assert_almost_equal(X_deformed_ref, X_deformed)
np.testing.assert_almost_equal(Y_deformed_ref, Y_deformed)
np.testing.assert_almost_equal(dX_ref, dX)
np.testing.assert_almost_equal(dY_ref, dY)
def test_basic_2d_torch(self):
points = (3, 3)
shape = (100, 100)
for order in (0, 1, 2):
for crop in (None, (slice(20, 80), slice(30, 70))):
for mode in ('nearest', 'wrap', 'reflect', 'mirror', 'constant'):
self.run_comparison_torch(shape, points, order=order, mode=mode, crop=crop)
def run_comparison_torch(self, shape, points, order=3, sigma=25, crop=None, mode='constant', axis=None):
if torch is None:
raise unittest.SkipTest("PyTorch was not loaded.")
# generate random displacement vector
displacement = np.random.randn(len(shape) if axis is None else len(axis), *points) * sigma
# generate random data
X_val = np.random.rand(*shape)
# compute forward reference value
X_deformed_ref = elasticdeform.deform_grid(X_val, displacement, order=order, crop=crop, mode=mode, axis=axis)
# generate gradient
dX_deformed_val = np.random.rand(*X_deformed_ref.shape)
# compute backward reference value
dX_ref = elasticdeform.deform_grid_gradient(dX_deformed_val, displacement, order=order, crop=crop, mode=mode, axis=axis, X_shape=shape)
# compute PyTorch output
X = torch.tensor(X_val, requires_grad=True)
displacement = torch.tensor(displacement)
dX_deformed = torch.tensor(dX_deformed_val)
X_deformed = etorch.deform_grid(X, displacement, order=order, crop=crop, mode=mode, axis=axis)
X_deformed.backward(dX_deformed)
dX = X.grad
# convert back to numpy
X_deformed = X_deformed.detach().numpy()
dX = dX.detach().numpy()
np.testing.assert_almost_equal(X_deformed_ref, X_deformed)
np.testing.assert_almost_equal(dX_ref, dX)
def test_multi_2d_torch(self):
points = (3, 3)
shape = (100, 75)
sigma = 25
for order in (0, 1, 2, 3, 4, [0, 3]):
for crop in (None, (slice(15, 25), slice(15, 50))):
for cval in (0.0, 1.0, [0.0, 1.0]):
for mode in ('constant', ['constant', 'reflect']):
self.run_comparison_torch_multi(shape, points, order=order, mode=mode, crop=crop)
def run_comparison_torch_multi(self, shape, points, order=3, sigma=25, crop=None, mode='constant', axis=None):
if torch is None:
raise unittest.SkipTest("PyTorch was not loaded.")
# generate random displacement vector
displacement = np.random.randn(len(shape) if axis is None else len(axis), *points) * sigma
# generate random data
X_val = np.random.rand(*shape)
# generate more random data
Y_val = np.random.rand(*shape)
# compute forward reference value
X_deformed_ref, Y_deformed_ref = elasticdeform.deform_grid([X_val, Y_val],
displacement, order=order, crop=crop, mode=mode, axis=axis)
# generate gradient
dX_deformed_val = np.random.rand(*X_deformed_ref.shape)
dY_deformed_val = np.random.rand(*Y_deformed_ref.shape)
# compute backward reference value
dX_ref, dY_ref = elasticdeform.deform_grid_gradient([dX_deformed_val, dY_deformed_val],
displacement, order=order, crop=crop, mode=mode, axis=axis, X_shape=[shape, shape])
# compute PyTorch output
X = torch.tensor(X_val, requires_grad=True)
Y = torch.tensor(Y_val, requires_grad=True)
displacement = torch.tensor(displacement)
dX_deformed = torch.tensor(dX_deformed_val)
dY_deformed = torch.tensor(dY_deformed_val)
X_deformed, Y_deformed = etorch.deform_grid([X, Y], displacement, order=order, crop=crop, mode=mode, axis=axis)
X_deformed.backward(dX_deformed, retain_graph=True)
Y_deformed.backward(dY_deformed)
dX = X.grad
dY = Y.grad
# convert back to numpy
X_deformed = X_deformed.detach().numpy()
Y_deformed = Y_deformed.detach().numpy()
dX = dX.detach().numpy()
dY = dY.detach().numpy()
np.testing.assert_almost_equal(X_deformed_ref, X_deformed)
np.testing.assert_almost_equal(Y_deformed_ref, Y_deformed)
np.testing.assert_almost_equal(dX_ref, dX)
np.testing.assert_almost_equal(dY_ref, dY)
if __name__ == '__main__':
unittest.main()