-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathfc4.py
243 lines (209 loc) · 6.36 KB
/
fc4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import cPickle as pickle
import sys
import cv2
import os
import numpy as np
import tensorflow as tf
from fcn import FCN
from config import *
from utils import get_session
from data_provider import load_data
import utils
from datasets import get_image_pack_fn
from data_provider import ImageRecord
def get_average(image_packs):
data = load_data(image_packs.split(','))
avg = np.zeros(shape=(3,), dtype=np.float32)
for record in data:
cv2.imshow('img',
cv2.resize((record.img / 2.0**16)**0.5, (0, 0), fx=0.2, fy=0.2))
cv2.waitKey(0)
avg += np.mean(record.img.astype(np.float32), axis=(0, 1))
avg = avg / np.linalg.norm(avg)
print '(%.3f, %.3f, %.3f)' % (avg[0], avg[1], avg[2])
def test(name, ckpt, image_pack_name=None, output_filename=None):
try:
external_image = image_pack_name.index('.') != -1
except:
external_image = None
if image_pack_name is None:
data = None
elif not external_image:
print("Loading image pack {}".format(image_pack_name))
data = load_data(image_pack_name.split(','))
with get_session() as sess:
fcn = FCN(sess=sess, name=name)
if ckpt != "-1":
fcn.load(ckpt)
else:
fcn.load_absolute(name)
if not external_image:
errors, _, _, _, ret, conf = fcn.test(
scales=[0.5],
summary=True,
summary_key=123,
data=data,
eval_speed=False,
visualize=output_filename is None)
if output_filename is not None:
try:
os.mkdir('outputs')
except:
pass
with open('outputs/%s.pkl' % output_filename, 'wb') as f:
pickle.dump(ret, f)
with open('outputs/%s_err.pkl' % output_filename, 'wb') as f:
pickle.dump(errors, f)
with open('outputs/%s_conf.pkl' % output_filename, 'wb') as f:
pickle.dump(conf, f)
print ret
print 'results dumped to outputs/%s_err.pkl' % output_filename
else:
img = cv2.imread(image_pack_name)
# reverse gamma correction for sRGB
img = (img / 255.0) ** 2.2 * 65536
images = [img]
fcn.test_external(images=images, fns=[image_pack_name])
def test_input_gamma(name,
ckpt,
input_gamma,
image_pack_name=None,
output_filename=None):
config_set_input_gamma(float(input_gamma))
if image_pack_name is None:
data = None
else:
data = load_data(image_pack_name.split(','))
with get_session() as sess:
fcn = FCN(sess=sess, name=name)
fcn.load(ckpt)
_, _, _, _, ret = fcn.test(
scales=[0.5], summary=True, summary_key=123, data=data)
if output_filename is not None:
with open('outputs/%s.pkl' % output_filename, 'wb') as f:
pickle.dump(ret, f)
print ret
print 'results dumped'
def dump_result(name, ckpt, image_pack_name=None):
if image_pack_name is None:
data = None
else:
data = load_data(image_pack_name.split(','))
outputs = []
gts = []
with get_session() as sess:
fcn = FCN(sess=sess, name=name)
fcn.load(ckpt)
_, _, outputs, gts = fcn.test(
scales=[0.5], summary=True, summary_key=123, data=data)
result = {
'outputs': np.array(outputs),
'gts': np.array(gts),
}
pickle.dump(result,
open("outputs/%s-%s-%s.pkl" % (name, ckpt, image_pack_name),
"wb"))
def dump_errors(name,
ckpt,
fold,
output_filename,
method='full',
samples=0,
pooling='median'):
samples = int(samples)
with get_session() as sess:
kwargs = {'dataset_name': 'gehler', 'subset': 0, 'fold': fold}
fcn = FCN(sess=sess, name=name, kwargs=kwargs)
fcn.load(ckpt)
for i in range(4):
if method == 'full':
errors, t, _, _, _ = fcn.test(scales=[0.5])
elif method == 'resize':
errors, t = fcn.test_resize()
elif method == 'patches':
errors, t = fcn.test_patch_based(
scale=0.5, patches=samples, pooling=pooling)
else:
assert False
utils.print_angular_errors(errors)
with open(output_filename, 'w') as f:
pickle.dump({'e': errors, 't': t}, f)
def test_multi(name, ckpt):
with get_session() as sess:
fcn = FCN(sess=sess, name=name)
fcn.load(ckpt)
fcn.test_multi()
def test_network(name, ckpt):
with get_session() as sess:
fcn = FCN(sess=sess, name=name)
fcn.load(ckpt)
fcn.test_network()
def cont(name, preload, key):
with get_session() as sess:
fcn = FCN(sess=sess, name=name)
sess.run(tf.global_variables_initializer())
if preload is not None:
fcn.load(name=preload, key=key)
fcn.train(EPOCHS)
def train(name, *args):
kwargs = {}
for arg in args:
key, val = arg.split('=')
kwargs[key] = val
OVERRODE[key] = val
with get_session() as sess:
fcn = FCN(sess=sess, name=name, kwargs=kwargs)
sess.run(tf.global_variables_initializer())
fcn.train(EPOCHS)
def show_patches():
from data_provider import DataProvider
dp = DataProvider(True, ['g0'])
dp.set_batch_size(10)
while True:
batch = dp.get_batch()
for img in batch[0]:
#img = img / np.mean(img, axis=(0, 1))[None, None, :]
img = img / img.max()
cv2.imshow("Input", np.power(img, 1 / 2.2))
cv2.waitKey(0)
def dump_gehler():
from datasets import GehlerDataSet
ds = GehlerDataSet()
ds.regenerate_meta_data()
ds.regenerate_image_packs()
def dump_cheng(start, end):
start = int(start)
end = int(end)
from datasets import ChengDataSet
for i in range(start, end + 1):
ds = ChengDataSet(i)
ds.regenerate_meta_data()
ds.regenerate_image_packs()
def override_global(key, val):
assert False
if type(globals()[key]) == str:
globals()[key] = val
elif type(globals()[key]) == int:
globals()[key] = int(val)
elif type(globals()[key]) == float:
globals()[key] = float(val)
else:
assert False
print "Overriding ", key, '=', val
OVERRODE[key] = val
print globals()[key]
initialize_dataset_config()
def test_naive():
return FCN.test_naive()
def dump_multi():
from datasets import MultiDataSet
ds = MultiDataSet()
ds.regenerate_meta_data()
ds.regenerate_image_packs()
if __name__ == '__main__':
if len(sys.argv) < 2:
print 'Usage: ./fccc.py [func]'
exit(-1)
filename = __file__[2:]
mode = sys.argv[1]
globals()[mode](*sys.argv[2:])