-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_org.py
193 lines (166 loc) · 6.88 KB
/
train_org.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
"""
Script for training language models.
"""
import tensorflow as tf
import numpy as np
import os, sys, time, yaml, logging
from munch import munchify
# Import model
from models.HybridEmbeddings import HybridEmbeddings as Model
# from models.PoolingWindow import Model
# Import other utilities
from utils.arguments import train_parser as parser
from utils.loader import DataLoader, BatchLoader
# Import tokenizer and encoder
from utils.tokenize import lmmrl_tokenizer
from utils.encode import lmmrl_encoder
logging.basicConfig(
stream=sys.stdout,
format='%(asctime)s [%(levelname)s] %(name)s: %(message)s',
level=logging.INFO
)
logger = logging.getLogger(__name__)
tf.reset_default_graph()
np.random.seed(1)
tf.set_random_seed(1)
def main():
"""The main method of script."""
args = parser.parse_args()
with open(args.config_file, 'r') as stream:
config = munchify(yaml.load(stream))
# print(config)
args.save_dir = os.path.join(args.save_dir, args.job_id)
args.best_dir = os.path.join(args.best_dir, args.job_id)
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
if not os.path.exists(args.best_dir):
os.makedirs(args.best_dir)
train(args.data_dir, args.save_dir, args.best_dir, config)
# Restores pretrained model from disk
def restore_model(sess, model, save_dir):
ckpt = tf.train.get_checkpoint_state(save_dir)
if ckpt:
logger.info("Reading model parameters from %s", ckpt.model_checkpoint_path)
model.saver.restore(sess, ckpt.model_checkpoint_path)
steps_done = int(ckpt.model_checkpoint_path.split('-')[-1])
# Since local variables are not saved
sess.run([model.local_initializer])
else:
steps_done = 0
sess.run([
model.global_initializer,
model.local_initializer
])
return steps_done
def train(data_dir, save_dir, best_dir, config):
"""Prepare the data and begin training."""
# Create variables
batch_size = config.batch_size
timesteps = config.timesteps
num_epochs = config.epochs
# Load the text and vocabulary
data_loader = DataLoader(
data_dir,
mode='train',
tokenize_func=lmmrl_tokenizer,
encode_func=lmmrl_encoder,
word_markers=config.include_word_markers,
max_word_length=config.max_word_length
)
# Prepare batches for training and validation
train_batch_loader = BatchLoader(data_loader, batch_size=batch_size, timesteps=timesteps, mode='train')
val_batch_loader = BatchLoader(data_loader, batch_size=batch_size, timesteps=timesteps, mode='val')
# update vocabulary sizes
config.word_vocab_size = len(data_loader.vocabs['words'])
config.char_vocab_size = len(data_loader.vocabs['chars'])
# Run on GPU by default
cfg_proto = tf.ConfigProto(intra_op_parallelism_threads=0, inter_op_parallelism_threads=0)
cfg_proto.gpu_options.allow_growth = True
##########################################################################
# Load word frequency information
##########################################################################
with open(os.path.join(data_dir, 'word_freq.txt'), encoding='utf-8') as f:
freq = f.read().split()
config['freq'] = freq
##########################################################################
# Create model
config.save_dir = save_dir
model = Model(config)
with tf.Session(config=cfg_proto, graph=model.graph) as sess:
# Restore model/Initialize weights
initializer = tf.random_uniform_initializer(-0.05, 0.05)
with tf.variable_scope("model", reuse=None, initializer=initializer):
steps_done = restore_model(sess, model, save_dir)
logger.info("Loaded %d completed steps", steps_done)
# Find starting epoch
start_epoch = model.epoch_cntr.eval()
# Start epoch-based training
lr = config.initial_learning_rate
# Finalize graph to prevent memory leakage
sess.graph.finalize()
last_val_ppl = 10000
for epoch in range(start_epoch, num_epochs):
logger.info("Epoch %d / %d", epoch+1, num_epochs)
# train
run_epoch(sess, model, train_batch_loader, 'train', save_dir=save_dir, lr=lr)
# fine-tune after every epoch
sess.run(model.update_unknown)
model.fine_tune(sess)
# validate
val_ppl = run_epoch(sess, model, val_batch_loader, 'val', best_dir=best_dir)
# update learning rate conditionally
if val_ppl >= last_val_ppl:
lr *= config.lr_decay
logger.info("Decaying learning rate to %.4f", lr)
last_val_ppl = val_ppl
# increment epoch
sess.run([model.incr_epoch])
def run_epoch(sess, model, batch_loader, mode='train', save_dir=None, best_dir=None, lr=None):
"""Run one epoch of training."""
# Prepare loader for new epoch
batch_loader.reset_pointers()
# Start from an empty RNN state
init_states = sess.run(model.initial_states)
states = init_states
if mode == 'val':
acc_loss = 0.0
end_epoch = False
b = 1
while not end_epoch:
x, y, end_epoch = batch_loader.next_batch()
if end_epoch:
break
if mode == 'train':
start = time.time()
# can update the learning rate here, if required
# lr = 1.0
loss, states = model.forward(sess, x, y, states, lr, mode)
end = time.time()
# print the result so far on terminal
logger.info("Batch %d, Loss - %.4f, Time - %.2f", b, loss, end - start)
elif mode == 'val':
loss = model.forward(sess, x, y, states, mode=mode)
acc_loss += loss
b += 1
# After epoch is complete
batch_loader.reset_pointers()
if mode == 'val':
# find metric from accumulated metrics of sentences
final_metric = np.exp(acc_loss/b)
best_metric = model.best_metric.eval()
logger.info("(Averaged) Evaluation metric = %.3f", final_metric)
logger.info("Best metric = %.3f", best_metric)
if final_metric < best_metric:
logger.info("Metric improved, saving best model")
# Store best metric in the model
sess.run([model.update_best_metric], feed_dict={model.new_best_metric: final_metric})
# Save the model
checkpoint_path = os.path.join(best_dir, "lm.ckpt")
model.saver.save(sess, checkpoint_path, global_step=model.global_step, write_meta_graph=False)
return final_metric
elif mode == 'train':
# Save the model
checkpoint_path = os.path.join(save_dir, "lm.ckpt")
model.saver.save(sess, checkpoint_path, global_step=model.global_step, write_meta_graph=False)
if __name__ == '__main__':
main()