-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
189 lines (157 loc) · 5.64 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
"""
Script for testing language models.
"""
import tensorflow as tf
import numpy as np
import os, yaml
from munch import munchify
from utils.arguments import test_parser as parser
from utils.loader import DataLoader, BatchLoader
from utils.tokenize import lmmrl_tokenizer
from utils.encode import lmmrl_encoder
# Import model
from models.HybridEmbeddings import HybridEmbeddings as Model
# from models.PoolingWindow import Model
tf.reset_default_graph()
np.random.seed(1)
tf.set_random_seed(1)
def main():
"""The main method of script."""
args = parser.parse_args()
mode = None
if not os.path.exists(args.model_dir):
print("Model not found.")
exit()
if not os.path.exists(args.config_file):
print("Configuration file not found.")
exit()
if args.test_dir is None:
if not os.path.exists(args.prior_dir):
print("Prior directory doesn't exist.")
exit()
else:
mode = 1
else:
if not os.path.exists(args.test_dir):
print("Test directory does not exist.")
exit()
else:
mode = 2
with open(args.config_file, 'r') as stream:
config = munchify(yaml.load(stream))
if mode == 1:
generate(config, args.model_dir, args.prior_dir)
else:
test(config, args.model_dir, args.test_dir)
# Restores pretrained model from disk
def restore_model(sess, model, save_dir):
ckpt = tf.train.get_checkpoint_state(save_dir)
if ckpt:
print("Reading model parameters from %s" % ckpt.model_checkpoint_path)
model.saver.restore(sess, ckpt.model_checkpoint_path)
steps_done = int(ckpt.model_checkpoint_path.split('-')[-1])
# Since local variables are not saved
sess.run([model.local_initializer])
else:
steps_done = 0
sess.run([
model.global_initializer,
model.local_initializer
])
return steps_done
def generate(config, model_dir, prior_dir):
with open(os.path.join(prior_dir, 'priors.txt'), 'r') as f:
prior_text = f.read()
prior_text, vocabs = lmmrl_tokenizer(test_data=prior_text, save_dir=prior_dir)
rev_vocab = {i:w for w,i in vocabs['words'].items()}
cfg_proto = tf.ConfigProto(intra_op_parallelism_threads=0, inter_op_parallelism_threads=0)
cfg_proto.gpu_options.allow_growth = True
# Load word frequency information
if not os.path.exists(os.path.join(prior_dir, 'word_freq.txt')):
print('Word frequency file not found.')
exit()
with open(os.path.join(prior_dir, 'word_freq.txt'), encoding='utf-8') as f:
freq = f.read().split()
config['freq'] = freq
config.save_dir = model_dir
model = Model(config)
with tf.Session(config=cfg_proto, graph=model.graph) as sess:
# Restore model/Initialize weights
initializer = tf.random_uniform_initializer(-0.05, 0.05)
with tf.variable_scope("model", reuse=None, initializer=initializer):
_ = restore_model(sess, model, model_dir)
print("Model restored from %s" % model_dir)
# Finalize graph to prevent memory leakage
sess.graph.finalize()
# Start from an empty RNN state
init_states = sess.run(model.initial_states, feed_dict={model._batch_size:1})
lengths = [1]
for sentence in prior_text['test']:
sentence = ['<s>'] + sentence
states = init_states
for idx in range(len(sentence) - 1):
print(sentence[idx], end=' ')
# prepare batch
x = np.full([1, config.timesteps], '<pad>')
x[0][0] = sentence[idx]
x = lmmrl_encoder(x, vocabs)
_, states = model.forward(sess, config, x=x, states=states, mode='gen')
generated_tokens = 0
x = np.full([1, config.timesteps], '<pad>')
x[0][0] = sentence[-1]
x = lmmrl_encoder(x, vocabs)
while True:
probs, states = model.forward(sess, config, x=x, states=states, mode='gen')
print(np.sum(probs[0,0]))
# predict next token
# next_token = rev_vocab[np.argmax(probs[0, 0, :])]
next_token = rev_vocab[np.random.choice(list(range(config.word_vocab_size)), p=probs[0,0])]
print(next_token, end=' ')
generated_tokens += 1
if next_token == '</s>' or generated_tokens >= config.max_tokens:
break
else:
x = np.full([1, config.timesteps], '<pad>')
x[0][0] = next_token
x = lmmrl_encoder(x, vocabs)
print('')
def test(config, model_dir, test_dir):
data_loader = DataLoader(test_dir, mode='test', tokenize_func=lmmrl_tokenizer, encode_func=lmmrl_encoder)
batch_loader = BatchLoader(data_loader, batch_size=config.batch_size, timesteps=config.timesteps, mode='test')
cfg_proto = tf.ConfigProto(intra_op_parallelism_threads=0, inter_op_parallelism_threads=0)
cfg_proto.gpu_options.allow_growth = True
# Load word frequency information
with open(os.path.join(test_dir, 'word_freq.txt'), encoding='utf-8') as f:
freq = f.read().split()
config['freq'] = freq
config.save_dir = model_dir
model = Model(config)
with tf.Session(config=cfg_proto, graph=model.graph) as sess:
# Restore model/Initialize weights
initializer = tf.random_uniform_initializer(-0.05, 0.05)
with tf.variable_scope("model", reuse=None, initializer=initializer):
_ = restore_model(sess, model, model_dir)
print("Model restored from %s" % model_dir)
# Finalize graph to prevent memory leakage
sess.graph.finalize()
# Prepare loader
batch_loader.reset_pointers()
# Start from an empty RNN state
init_states = sess.run(model.initial_states)
states = init_states
acc_loss = np.zeros(batch_loader.batch_size)
end_epoch = False
b = 1
while not end_epoch:
x, y, end_epoch = batch_loader.next_batch()
if end_epoch:
break
loss = model.forward(sess, x, y, states, mode='val')
# accumulate evaluation metric here
acc_loss += loss
print("Batch = %d, Average loss = %.4f" % (b, np.mean(loss)))
b += 1
final_metric = np.exp(np.mean(acc_loss)/(b-1))
print("(Averaged) Evaluation metric = %.4f" % final_metric)
if __name__ == '__main__':
main()