-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathon_the_image.m
294 lines (249 loc) · 11 KB
/
on_the_image.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
function varargout = on_the_image(varargin)
% ON_THE_IMAGE MATLAB code for on_the_image.fig
% ON_THE_IMAGE, by itself, creates a new ON_THE_IMAGE or raises the existing
% singleton*.
%
% H = ON_THE_IMAGE returns the handle to a new ON_THE_IMAGE or the handle to
% the existing singleton*.
%
% ON_THE_IMAGE('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in ON_THE_IMAGE.M with the given input arguments.
%
% ON_THE_IMAGE('Property','Value',...) creates a new ON_THE_IMAGE or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before on_the_image_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to on_the_image_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help on_the_image
% Last Modified by GUIDE v2.5 10-May-2018 15:32:56
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @on_the_image_OpeningFcn, ...
'gui_OutputFcn', @on_the_image_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before on_the_image is made visible.
function on_the_image_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to on_the_image (see VARARGIN)
% Set up output file
fid = fopen(sprintf('%s_out.txt', varargin{2}), 'w');
fprintf(fid, sprintf('Output of DeepDreamGUI, creating ''%s'' from ''%s''\n', ...
varargin{2}, varargin{1}));
% Choose default command line output for on_the_image
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% Set up necessary data
initial = imread(varargin{1});
generated = imread(varargin{2});
scale = size(initial, 1) / size(generated, 1);
resized = imresize(generated, scale);
% Set up GUI
setUpImages(initial, generated, handles);
setUpEuclidean(initial, resized, handles, fid);
setUpDescStats(initial, resized, handles, fid);
setUpGraphs(initial, generated, handles)
% Close output file
fclose(fid);
function setUpImages(initial, generated, handles)
% function setUpImages(initial, generated, handles)
% Function to set up the initial and generated pictures in the GUI
% images.
% Input - initial: Matrix of the initial image
% generated: Matrix of the generated image
% handles: Structure with handles and user data
% No output
% Show initial photo
axes(handles.initial_image)
image(initial)
axis off
axis image
% Show generated photo
axes(handles.generated_image)
image(generated)
axis off
axis image
function setUpGraphs(initial, generated, handles)
% function setUpGraphs(initial, generated, handles, fid)
% Function to set up the histograms comparing the initial and generated
% images.
% Input - initial: Matrix of the initial image
% generated: Matrix of the generated image
% handles: Structure with handles and user data
% fid: File to write output to
% No output
% Set up necessary data
numBins = 255;
% Set up B&W histogram
axes(handles.bw_graph), hold on;
initBwInfo = rgb2gray(initial);
initBwInfo = initBwInfo(:);
geneBwInfo = rgb2gray(generated);
geneBwInfo = geneBwInfo(:);
scale = size(initial, 1) / size(generated, 1);
resized = imresize(geneBwInfo, scale);
[ ~, tempN1] = MyImageHistogram(resized, numBins); % Generated image histogram data
[tempXcen, tempN2] = MyImageHistogram(initBwInfo, numBins); % Initial histogram data
bar(tempXcen, [tempN1(:), tempN2(:)], 'grouped');
xlabel('Level, x/255');
ylabel('Count');
% Set up red histogram
axes(handles.red_graph), hold on;
redInitInfo = generated(:,:,1);
redInitInfo = redInitInfo(:);
redInfo = generated(:,:,1);
redInfo = redInfo(:);
scale = size(initial, 1) / size(generated, 1);
resized = imresize(redInfo, scale);
[ ~, tempN1] = MyImageHistogram(resized, numBins); % Generated image histogram data
[tempXcen, tempN2] = MyImageHistogram(redInitInfo, numBins); % Initial histogram data
bar(tempXcen, [tempN1(:), tempN2(:)], 'grouped');
xlabel('Level, x/255');
ylabel('Count');
% Set up green histogram
axes(handles.green_graph), hold on;
greenInitInfo = generated(:,:,1);
greenInitInfo = greenInitInfo(:);
greenInfo = generated(:,:,2);
greenInfo = greenInfo(:);
scale = size(initial, 1) / size(generated, 1);
resized = imresize(greenInfo, scale);
[ ~, tempN1] = MyImageHistogram(resized, numBins); % Generated image histogram data
[tempXcen, tempN2] = MyImageHistogram(greenInitInfo, numBins); % Initial histogram data
bar(tempXcen, [tempN1(:), tempN2(:)], 'grouped');
xlabel('Level, x/255');
ylabel('Count');
% Set up blue histogram
axes(handles.blue_graph), hold on;
blueInitInfo = generated(:,:,1);
blueInitInfo = blueInitInfo(:);
blueInfo = generated(:,:,3);
blueInfo = blueInfo(:);
scale = size(initial, 1) / size(generated, 1);
resized = imresize(blueInfo, scale);
[ ~, tempN1] = MyImageHistogram(resized, numBins); % Generated image histogram data
[tempXcen, tempN2] = MyImageHistogram(blueInitInfo, numBins); % Initial histogram data
bar(tempXcen, [tempN1(:), tempN2(:)], 'grouped');
xlabel('Level, x/255');
ylabel('Count');
% --- Outputs from this function are returned to the command line.
function varargout = on_the_image_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
function dist = getDistance(initMatrix, geneMatrix)
% function dist = getDistance(initMatrix, geneMatrix)
% Function to find the euclidean distance between two 2D matrices.
% Input - initMatrix: initial image array
% geneMatrix: generated deep dream image
% Output - dist: Euclidean distance of the given matrices
matrixDiff = initMatrix - geneMatrix;
dist = sqrt(sum(sum((matrixDiff).^2)));
function setUpEuclidean(initial, generated, handles, fid)
% function setUpEuclidean(initial, generated, handles, fid)
% Function to set up the descriptive stats panel.
% Input - initial: initial image array
% generated: generated deep dream image
% handles: structure with handles and user data (see GUIDATA)
% fid: file to write output to
% No output
bwInitMatrix = rgb2gray(initial);
bwGeneMatrix = rgb2gray(generated);
bwDist = getDistance(bwInitMatrix, bwGeneMatrix);
redInitMatrix = initial(:,:,1);
redGeneMatrix = generated(:,:,1);
redDist = getDistance(redInitMatrix, redGeneMatrix);
greenInitMatrix = initial(:,:,2);
greenGeneMatrix = generated(:,:,2);
greenDist = getDistance(greenInitMatrix, greenGeneMatrix);
blueInitMatrix = initial(:,:,3);
blueGeneMatrix = generated(:,:,3);
blueDist = getDistance(blueInitMatrix, blueGeneMatrix);
set(handles.bw_dist, 'String', bwDist);
set(handles.red_dist, 'String', redDist);
set(handles.green_dist, 'String', greenDist);
set(handles.blue_dist, 'String', blueDist);
fprintf(fid, 'B&W Euclidean distance: %s\n', bwDist);
fprintf(fid, 'Red Euclidean distance: %s\n', redDist);
fprintf(fid, 'Green Euclidean distance: %s\n', greenDist);
fprintf(fid, 'Blue Euclidean distance: %s\n', blueDist);
function mean = getMean(imData)
% function mean = getMean(imData)
% Finds mean of the given data
% Input - imData: array with data to find median for
% Output - mean: median of given data
imData = imData(:);
dataSum = sum(imData);
mean = dataSum / length(imData);
function median = getMedian(imData)
% function median = getMedian(imData)
% Finds median of the given data
% Input - imData: array with data to find median for
% Output - median: median of given data
imData = imData(:);
midIdx = length(imData) / 2;
imData = sort(imData);
if mod(length(imData), 2) == 0
median = (imData(midIdx) + imData(midIdx + 1)) / 2;
return
end
median = imData (midIdx);
function stddev = getStdDev(data, mean)
% function stddev = getStdDev(imData, mean)
% Find the standard deviation for the given data
% Input - data: data to find the std dev
% mean: mean of the given data
% Output - stddev: calculated standard deviation
data = data(:);
sumData = sum(abs(data - mean) .^ 2);
variance = sumData / (length(data) - 1);
stddev = variance ^ 2;
function setUpDescStats(initial, generated, handles, fid)
% function setupDescStats(initial, generated, handles)
% Function to set up the descriptive stats panel.
% Input - initial: initial image array
% generated: generated deep dream image
% handles: structure with handles and user data (see GUIDATA)
% fid: file to write output to
% No output
initMean = getMean(initial);
geneMean = getMean(generated);
set(handles.mean_text, 'String', geneMean);
set(handles.mean_before, 'String', initMean);
initMedian = getMedian(initial);
geneMedian = getMedian(generated);
set(handles.median_text, 'String', geneMedian);
set(handles.median_before, 'String', initMedian);
initStdDev = getStdDev(initial, initMean);
geneStdDev = getStdDev(generated, geneMean);
set(handles.stddev_text, 'String', geneStdDev);
set(handles.stddev_before, 'String', initStdDev);
fprintf(fid, 'Initial:output mean: %s:%s\n', ...
initMean, geneMean);
fprintf(fid, 'Initial:output median: %d:%d\n', ...
initMedian, geneMedian);
fprintf(fid, 'Initial:output standard deviation: %s:%s\n', ...
initStdDev, geneStdDev);