forked from cvxr/TFOCS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtfocs_initialize.m
631 lines (568 loc) · 21 KB
/
tfocs_initialize.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
%SOLVER_INITIALIZE TFOCS helper script
% Performs the initializations common to all of the first-order solvers
% Process the options structure and string/value pairs. First, we replace the
% default values with any values specified by the user in the 'opts' structure.
% We ignore any fields in the 'opts' structure that do not match ours, so that
% users can re-use the opts structure for other purposes.
odef = struct( ...
'maxIts', Inf ,...
'maxCounts', Inf ,...
'countOps', false ,... % adjusted if maxCounts < Inf
'saveHist', true ,...
'adjoint', false ,...
'saddle', false ,...
'tol', 1e-8 ,...
'errFcn', {{}} ,...
'stopFcn', {{}} ,...
'printEvery', 100 ,...
'maxmin', 1 ,...
'beta', 0.5 ,...
'alpha', 0.9 ,... % See below for special CG stuff
'L0', 1 ,... % See below
'Lexact', Inf ,...
'mu', 0 ,...
'fid', 1 ,...
'stopCrit', 1 ,... % the TFOCS paper used stopCrit = 2
'alg', 'AT' ,...
'restart', Inf ,...
'printStopCrit', false,...
'cntr_reset', -50 ,... % how often to explicitly recompute A*x and A*y (set to Inf if you want )
'cg_restart', Inf ,... % for CG only
'cg_type', 'pr' ,... % for CG only
'stopping_criteria_always_use_x', false, ...
'data_collection_always_use_x', false, ...
'output_always_use_x', false, ...
'autoRestart', 'gra', ... % function or gradient
'printRestart', true, ...
'debug', false ....
);
% Calling the solver with a no arguments returns the default options structure
if narginn < 1 || ( narginn ==1 && isstruct( smoothF ) )
opts = odef;
% remove the "CG" options for now, since they are undocumented
opts = rmfield(opts,'cg_restart');
opts = rmfield(opts,'cg_type');
% if any default options are passed in (e.g. by tfocs_SCD), add those now:
if ( narginn ==1 && isstruct( smoothF ) )
for f = fieldnames( smoothF )'
opts.( f{1} ) = smoothF.( f{1} );
end
end
out = [];
x = opts;
if nargoutt == 0,
disp('====== TFOCS default options =======');
% disp('Format is fieldname: { [default] ''Usage type.
% Description''}');
% add some helpful description
desc = [];
desc.alg = 'Algorithm, e.g. GRA for gradient descent. Values: AT, GRA, LLM, N07, N83, TS';
desc.maxIts = 'Basic. Maximum number of allowed iterations';
desc.saveHist = 'Basic. Record history of all iterations';
desc.restart = 'Basic. Restart parameter. Make negative for "no-regress" feature';
desc.tol = 'Basic. Tolerance for stopping criteria';
desc.L0 = 'Basic. Initial estimate of Lipschitz constant';
desc.Lexact = 'Basic. Known bound of Lipschitz constant';
desc.printEvery = 'Basic. How often to print info to the terminal; set to 0 or Inf to suppress output';
desc.maxmin = 'Basic. +1 for convex minimization, -1 for concave maximization';
desc.errFcn = 'Medium. User-specified error function. See user guide';
desc.beta = 'Medium. Backtracking parameter, in (0,1). No line search if >= 1';
desc.alpha = 'Medium. Line search increase parameter, in (0,1)';
desc.autoRestart= 'Medium. Set to ''gra'' or ''fun'' to choose behavior when restart<0';
desc.maxCounts = 'Advanced. Vector that fine-tunes various types of iteration limits; same form as countOps';
desc.countOps = 'Advanced. Record number of linear multiplies, etc.; form [fcn, grad, linear, nonsmth, proj]';
desc.mu = 'Advanced. Strong convexity parameter.';
desc.fid = 'Advanced. File id, e.g. via fopen. All output is sent to this file';
desc.stopFcn = 'Advanced. User-supplied stopping criteria. See user guide';
desc.stopCrit = 'Advanced. Controls which stopping criteria to use; 1,2, 3 or 4.';
desc.printStopCrit = 'Advanced. Controls whether to display the value used in the stopping criteria';
desc.printRestart = 'Advanced. Whether to signal when a restart happens';
desc.cntr_reset = 'Advanced. Controls how often to reset some numerical computations to avoid roundoff';
desc.debug = 'Advanced. Turns on more useful error messages';
desc.stopping_criteria_always_use_x = 'Advanced. Forces usage of x, never y, in stopping crit.';
desc.data_collection_always_use_x = 'Advanced. Forces usage of x, nevery y, in recording errors.';
desc.output_always_use_x = 'Advanced. Forces output of x, never y. Default: uses whichever is better';
desc.adjoint = 'Internal.';
desc.saddle = 'Internal. Used by TFOCS_SCD';
disp( opts );
disp('====== Description of TFOCS options =======');
disp( desc );
end
return % from this script only; the calling function does not return
end
% [smoothF, affineF, projectorF, x0, opts ] = deal(varargin{:});
% Check for incorrect types
F_types = {'function_handle','cell','double','single'};
assert( ismember(class(smoothF),F_types),'smoothF is of wrong type' );
assert( ismember(class(affineF),F_types),'affineF is of wrong type' );
assert( ismember(class(projectorF),F_types),'projectorF 3 is of wrong type' );
if narginn >= 4
x0_types = {'cell','double','single','tfocs_tuple'};
assert( ismember(class(x0),x0_types),'x0 is of wrong type' );
end
if narginn >= 5 && ~isempty(opts)
assert( ismember(class(opts),{'struct'}),'opts is of wrong type' );
end
% Some parameters defaults depend on whether the user supplies other
% options. These will be updated later
L0_default = odef.L0;
odef.L0 = Inf;
alpha_default = odef.alpha; % typically 0.9
alpha_default_CG = 1;
odef.alpha = Inf;
% Process the options structure, merging it with the default options
% (merge "opts" into "odef")
def_fields = fieldnames(odef)'; % default options
if narginn > 4 && ~isempty(opts),
use_fields = zeros(size(def_fields));
opt_fields = fieldnames(opts)'; % user-supplied options
for k = opt_fields,
k = k{1};
ndx = find(strcmpi(def_fields,k));
if ~isempty(ndx)
if ~isempty(opts.(k)) && ~use_fields(ndx),
odef.(def_fields{ndx}) = opts.(k);
end
use_fields(ndx) = use_fields(ndx) + 1;
else
% Warn if the field is not found in our options structure
warnState = warning('query','backtrace');
warning off backtrace
warning('TFOCS:OptionsStructure',' Found extraneous field "%s" in options structure', k );
warning(warnState);
end
end
% Warn if fields appear twice due to capitalization; e.g., maxIts/maxits
if any(use_fields>1),
warnState = warning('query','backtrace');
warning off backtrace
warning('TFOCS:OptionsStructure',' Some fieldnames of the options structure are identical up to capitalization: unpredictable behavior');
warning(warnState);
end
end
% Remove unnecessary options
if ~strcmpi( odef.alg, 'cg' )
odef = rmfield( odef, 'cg_restart' );
odef = rmfield( odef, 'cg_type' );
% update our list of fieldnames
def_fields = fieldnames(odef)';
end
% If opts.alpha wasn't supplied, use a default value:
if isinf(odef.alpha)
if strcmpi( odef.alg, 'cg' )
odef.alpha = alpha_default_CG;
else
odef.alpha = alpha_default;
end
end
% If opts.printEvery is Inf, set it to 0
if isinf(odef.printEvery)
odef.printEvery = 0;
end
% The default value of L0 is set to Lexact, if it is supplied
if isinf(odef.L0),
if isinf(odef.Lexact),
if odef.beta >= 1,
error( 'For a fixed step size, L0 or Lexact must be supplied.' );
end
odef.L0 = L0_default;
else
odef.L0 = odef.Lexact;
end
end
% If maxCounts is set, set countOps to true
if any(odef.maxCounts<Inf),
odef.countOps = true;
end
% If cntr_reset is not set (signfied by being negative), set to defaults
if odef.cntr_reset < 0
odef.cntr_reset = round(abs(odef.cntr_reset));
% and if we requested high precision, change the default
if odef.tol < 1e-12
odef.cntr_reset = 10;
end
end
% Now move the options into the current workspace
for k = def_fields,
assignin('caller',k{1},odef.(k{1}));
end
opts = odef;
%
% Smooth function, pass 1
%
if isempty( smoothF ),
error( 'Must supply a smooth function specification.' );
elseif isa( smoothF, 'function_handle' ),
smoothF = { smoothF };
elseif ~isa( smoothF, 'cell' ),
error( 'smoothF must be a function handle, or a cell array of them.' );
end
n_smooth = numel(smoothF);
saddle_ndxs = 1 : n_smooth;
% Adding Feb 2011: a get_dual function (see below)
%
% Projector, pass 1
%
if isa( projectorF, 'function_handle' ),
projectorF = { projectorF };
elseif ~isa( projectorF, 'cell' ) && ~isempty( projectorF ),
error( 'projectorF must be a function handle, or a cell array of them.' );
end
n_proj = numel(projectorF);
%
% Linear functions and affine offsets
%
% If the affine operator is anything *but* a cell array, convert it to one.
maxmin = sign(maxmin);
if isempty( affineF )
affineF = { @linop_identity };
elseif isnumeric( affineF ),
if ndims(affineF) > 1,
error( 'Multidimensional arrays are not permitted.' );
end
if numel(affineF) == 1,
identity_linop = affineF == 1;
affineF = { linop_scale( affineF ) };
else
identity_linop = false;
affineF = { linop_matrix( affineF ) };
end
elseif isa( affineF, 'function_handle' ),
affineF = { affineF };
elseif ~isa( affineF, 'cell' ),
error( 'Invalid affine operator specification.' );
end
% If adjoint mode is specified, temporarily transpose the affineF cell
% array so that the rows and columns match the number of smooth functions
% and projectors, respectively. Then verify size compatibility.
if adjoint, affineF = affineF'; end
[ m_aff, n_aff ] = size( affineF );
% if all( m_aff ~= n_smooth + [0,1] ) || n_proj && all( n_aff ~= n_proj + [0,1] ),
% error( 'The affine operation matrix has incompatible dimensions.' );
% May 16, 2011: making error messages more informative
if all( m_aff ~= n_smooth + [0,1] )
if fid
fprintf(fid,'Detected error: inputs are of wrong size\n');
fprintf(fid,' Found %d smooth functions, so expect that many primal variables\n',...
n_smooth );
fprintf(fid,' So the affine operator should have %d (or %d if there is an offset) entries\n',...
n_smooth, n_smooth+1 );
fprintf(fid,' but instead found %d affine operators\n', m_aff );
fprintf(fid,' Perhaps you need the transpose of the affine operator?\n');
end
error( 'The affine operation matrix has incompatible dimensions.' );
elseif n_proj && all( n_aff ~= n_proj + [0,1] ),
if fid
fprintf(fid,'Detected error: inputs are of wrong size\n');
fprintf(fid,' Found %d nonsmooth functions, so expect %d or %d sets of affine operators\n',...
n_proj, n_proj, n_proj + 1 );
fprintf(fid,' but instead found %d affine operators\n', n_aff );
end
error( 'The affine operation matrix has incompatible dimensions.' );
elseif n_proj == 0,
n_proj = max( 1, m_aff - 1 );
end
inp_dims = cell( 1, n_proj );
otp_dims = cell( 1, n_smooth );
% If an additional affine portion of the objective has been specified,
% create an additional smooth function to contain it.
if m_aff == n_smooth + 1,
offset = true; % note: saddle_ndxs is 1:n_smooth
otp_dims{end+1} = [1,1];
smoothF{end+1} = smooth_linear( maxmin );
n_smooth = n_smooth + 1;
for k = 1 : n_proj,
offX = affineF{end,k};
if isempty(offX),
affineF{end,k} = 0;
elseif isa(offX,'function_handle'),
if adjoint, pos = 'row'; else pos = 'column'; end
error( 'The elements in the last %s must be constants.', pos );
elseif isnumeric(offX) && numel(offX) == 1 && offX == 0,
affineF{end,k} = 0;
elseif nnz(offX),
affineF{end,k} = linop_dot( affineF{end,k}, adjoint );
% add a case if ~nnz(offX)... Jan 2012
elseif ~nnz(offX)
affineF{end,k} = 0;
end
end
else
offset = false;
end
% If an affine offset has been specified, integrate those offsets into
% each smooth function, then remove that portion of the array.
if n_aff == n_proj + 1,
for k = 1 : n_smooth,
offX = affineF{k,end};
if isempty(offX),
continue;
elseif isa(offX,'function_handle'),
if adjoint, pos = 'column'; else pos = 'row'; end
error( 'The elements in the last %s must be constant matrices.', pos );
elseif isnumeric(offX) && numel(offX) == 1 && offX == 0,
continue;
else
otp_dims{k} = size(offX);
if nnz(offX),
smoothF{k} = @(x)smoothF{k}( x + offX );
end
end
end
n_aff = n_aff - 1;
affineF(:,end) = [];
end
% -- Todo:
% If opts.debug = true, then before calling linop_stack,
% we should print a message showing the sizes of everything
% (this is useful when the linear portion is entered as "1" or "[]"
% and we have automatically determined the size ).
% Transpose back, if necessary; then check dimensions
if adjoint,
affineF = affineF';
[ linearF, otp_dims, inp_dims ] = linop_stack( affineF, otp_dims, inp_dims, debug );
linearF = linop_adjoint( linearF );
else
[ linearF, inp_dims, otp_dims ] = linop_stack( affineF, [], [], debug );
end
identity_linop = isequal( linearF, @linop_identity ); % doesn't always catch identities
square_linop = identity_linop || isequal( inp_dims, otp_dims );
adj_arr = [0,2,1];
if countOps,
apply_linear = @(x,mode)solver_apply( 3, linearF, x, mode );
else
apply_linear = linearF;
end
%
% Smooth function, pass 2: integrate scale, counting
%
smoothF = smooth_stack( smoothF );
if maxmin < 0,
smoothF = tfunc_scale( smoothF, -1 );
end
if countOps,
apply_smooth = @(x)solver_apply( 1:(1+(nargoutt>1)), smoothF, x );
else
apply_smooth = smoothF;
end
%
% Projector, pass 2: supply default, stack it up, etc.
%
if isempty( projectorF ),
n_proj = 0;
projectorF = proj_Rn;
else
projectorF = prox_stack( projectorF );
end
if countOps,
apply_projector = @(varargin)solver_apply( 4:(4+(nargoutt>1)), projectorF, varargin{:} );
else
apply_projector = projectorF;
end
%
% Initialize the op counts
%
if countOps,
global tfocs_count___
tfocs_count___ = [0,0,0,0,0];
maxCounts = maxCounts(:)';
end
%
% Construct the common initial values
%
L = L0;
theta = Inf;
f_v_old = Inf;
x = []; A_x = []; f_x = Inf; C_x = Inf; g_x = []; g_Ax = [];
restart_iter = 0;
warning_lipschitz = 0;
backtrack_simple = true;
backtrack_tol = 1e-10;
backtrack_steps = 0;
%
% Try to determine the size of the input, and construct the initial point.
%
% Attempt 1: From x0 itself
zero_x0 = true;
if ~isempty( x0 ),
if isa( x0, 'tfocs_tuple' )
x0 = cell(x0);
end
if isa( x0, 'cell' ),
n_x0 = numel( x0 );
if n_x0 == 1,
x0 = x0{1};
else
x0 = tfocs_tuple( x0 );
end
else
n_x0 = 1;
end
if n_proj && n_proj ~= n_x0,
error( 'Size conflict detected between the projector and x0.' );
end
zero_x0 = ~nnz(x0);
% Attempt 2: From the linear operator dimensions
elseif ~size_ambig( inp_dims ),
x0 = tfocs_zeros( inp_dims );
elseif ~size_ambig( otp_dims ),
A_x = tfocs_zeros( otp_dims );
x0 = apply_linear( A_x, 2 );
end
if isempty( x0 ),
error( 'Could not determine the dimensions of the problem. Please supply an explicit value for x0.' );
end
x = x0;
if isinf( C_x ),
C_x = apply_projector( x );
if isinf( C_x ),
zero_x0 = false;
[ C_x, x ] = apply_projector( x, 1 );
end
end
if isempty( A_x ),
if identity_linop || zero_x0 && square_linop,
A_x = x;
elseif ~zero_x0 || size_ambig( otp_dims ), % Jan 2012: todo: give size_ambig the 'offset' information
A_x = apply_linear( x, 1 ); % celldisp( size(A_x) )
else
A_x = tfocs_zeros( otp_dims );
end
end
% New, Jan 2012
if debug
if ~adjoint, str1 = 'primal'; str2 = 'dual';
else, str1 = 'dual'; str2 = 'primal';
end
fprintf(fid,'------- DEBUG INFO -----------\n');
offsetPossible = offset && ~adjoint;
fprintf(fid,'Size of %s variable, via method 1\n', str1);
print_cell_size( size(x0), fid, offsetPossible);
fprintf(fid,'Size of %s variable, via method 2\n', str1);
print_cell_size( inp_dims, fid, offsetPossible);
offsetPossible = offset && adjoint;
fprintf(fid,'Size of %s variable, via method 1\n', str2);
print_cell_size( size(A_x), fid, offsetPossible);
fprintf(fid,'Size of %s variable, via method 2\n', str2);
print_cell_size( otp_dims, fid, offsetPossible);
fprintf(fid,'------------------------------\n');
end
% Added Dec 2012, check for bad sizes that are not integers
if ~isequal( otp_dims, tfocs_round(otp_dims) )
error('Output dimensions must be integer valued');
end
if ~isequal( inp_dims, tfocs_round(inp_dims) )
error('Input dimensions must be integer valued');
end
% Final size check
[ isOK1, inp_dims ] = size_compat( size(x0), inp_dims );
[ isOK2, otp_dims ] = size_compat( size(A_x), otp_dims );
if ~isOK1 || ~isOK2,
if debug
if ~isOK1
fprintf(fid,'Debug message: size of %s variables did not line up\n',str1);
end
if ~isOK2
fprintf(fid,'Debug message: size of %s variables did not line up\n',str2);
end
end
error( 'Could not determine the dimensions of the problem. Please supply an explicit value for x0.' );
end
[ f_x, g_Ax ] = apply_smooth( A_x );
if isinf( f_x ),
error( 'The initial point lies outside of the domain of the smooth function.' );
end
% Adding Feb 2011:
if isa(g_Ax,'tfocs_tuple')
get_dual = @(g_Ax) get( g_Ax, saddle_ndxs );
else
get_dual = @(g_Ax) g_Ax;
end
% Theta advancement function
% if mu > 0 && Lexact > mu
if mu > 0 && ~isinf(Lexact) && Lexact > mu, % fixed Dec 2011
if ~strcmp(alg,'N83')
warnState = warning('query','backtrace');
warning off backtrace
warning('TFOCS:OptionsStructure',' Lexact and mu>0 specifications only give guaranteed convergence with N83 algorithm');
if strcmp(alg,'AT')
warning('TFOCS:OptionsStructure',' (With AT algorithm, known to give wrong solutions sometimes when mu>0)');
end
warning(warnState);
end
% Note that we have not yet derived theory to adapt this to
% a local Lipschitz constant but that it should be possible
theta_scale = sqrt(mu / Lexact);
theta_scale = ( 1 - theta_scale ) / ( 1 + theta_scale );
advance_theta = @(theta_old,L,L_old) min(1,theta_old*theta_scale);
else
advance_theta = @(theta_old,L,L_old) 2/(1+sqrt(1+4*(L/L_old)/theta_old.^2));
end
% Preallocate the arrays for the output structure
out.alg = alg;
out.algorithm = algorithm;
if ~isempty(errFcn) && ~iscell(errFcn),
errFcn = { errFcn };
end
if ~isempty(stopFcn) && ~iscell(stopFcn),
stopFcn = { stopFcn };
end
errs = zeros(1,length(errFcn));
if nargoutt == 1,
saveHist = false;
end
if saveHist,
[ out.f, out.normGrad, out.stepsize, out.theta ] = deal( zeros(0,1) );
if countOps,
out.counts = zeros(0,length(tfocs_count___));
end
if ~isempty(errFcn),
out.err = zeros(0,length(errs));
end
end
if saddle,
out.dual = [];
end
n_iter = 0;
status = '';
% Initialize the iterate values
y = x; z = x;
A_y = A_x; A_z = A_x;
C_y = Inf; C_z = C_x;
f_y = f_x; f_z = f_x;
g_y = g_x; g_z = g_x;
g_Ay = g_Ax; g_Az = g_Ax;
norm_x = sqrt( tfocs_normsq( x ) );
% for recomputing linear operators
cntr_Ay = 0;
cntr_Ax = 0;
% Special setup for constant step sizes
if beta >= 1,
beta = 1;
alpha = 1;
end
% Print the opening text
if fid && printEvery,
fprintf(fid,'%s\n',algorithm);
fprintf(fid,'Iter Objective |dx|/|x| step');
if countOps, fprintf( fid, ' F G A N P' ); end
if ~isempty(errFcn)
nBlanks = max( [0, length(errFcn)*9 - 9] );
fprintf( fid, ' errors%s',repmat(' ',nBlanks,1) );
end
if printStopCrit, fprintf( fid, ' stopping criteria' ); end
fprintf( fid, '\n' );
fprintf(fid,'----+----------------------------------' );
if countOps, fprintf( fid, '+-------------------------------' ); end
% if ~isempty(errFcn), fprintf( fid, '+-------------------' ); end
if ~isempty(errFcn)
fprintf( fid, '+%s', repmat('-',1+length(errFcn)*9,1) );
end
if printStopCrit, fprintf( fid, '+%s', repmat('-',19,1) ); end
fprintf(fid,'\n');
end
% Initialize some variables
just_restarted = false;
% TFOCS v1.3 by Stephen Becker, Emmanuel Candes, and Michael Grant.
% Copyright 2013 California Institute of Technology and CVX Research.
% See the file LICENSE for full license information.