|
| 1 | +# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved |
| 2 | +import argparse |
| 3 | +import multiprocessing as mp |
| 4 | +import os |
| 5 | + |
| 6 | +import cv2 |
| 7 | +import detectron2.data.transforms as T |
| 8 | +import numpy as np |
| 9 | +import torch |
| 10 | +from detectron2.checkpoint import DetectionCheckpointer |
| 11 | +from detectron2.config import get_cfg |
| 12 | +from detectron2.data import MetadataCatalog |
| 13 | +from detectron2.data.detection_utils import read_image |
| 14 | +from detectron2.modeling import build_model |
| 15 | +from detectron2.utils.logger import setup_logger |
| 16 | +from skimage import io |
| 17 | +from torch import nn |
| 18 | + |
| 19 | +# constants |
| 20 | +WINDOW_NAME = "COCO detections" |
| 21 | + |
| 22 | + |
| 23 | +def setup_cfg(args): |
| 24 | + # load config from file and command-line arguments |
| 25 | + cfg = get_cfg() |
| 26 | + cfg.merge_from_file(args.config_file) |
| 27 | + cfg.merge_from_list(args.opts) |
| 28 | + # Set score_threshold for builtin models |
| 29 | + cfg.MODEL.RETINANET.SCORE_THRESH_TEST = args.confidence_threshold |
| 30 | + cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = args.confidence_threshold |
| 31 | + cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = args.confidence_threshold |
| 32 | + cfg.freeze() |
| 33 | + return cfg |
| 34 | + |
| 35 | + |
| 36 | +def get_last_conv_name(net): |
| 37 | + """ |
| 38 | + 获取网络的最后一个卷积层的名字 |
| 39 | + :param net: |
| 40 | + :return: |
| 41 | + """ |
| 42 | + layer_name = None |
| 43 | + for name, m in net.named_modules(): |
| 44 | + if isinstance(m, nn.Conv2d): |
| 45 | + layer_name = name |
| 46 | + return layer_name |
| 47 | + |
| 48 | + |
| 49 | +class GradCAM(object): |
| 50 | + """ |
| 51 | + 1: 网络不更新梯度,输入需要梯度更新 |
| 52 | + 2: 使用目标类别的得分做反向传播 |
| 53 | + """ |
| 54 | + |
| 55 | + def __init__(self, net, layer_name): |
| 56 | + self.net = net |
| 57 | + self.layer_name = layer_name |
| 58 | + self.feature = None |
| 59 | + self.gradient = None |
| 60 | + self.net.eval() |
| 61 | + self.handlers = [] |
| 62 | + self._register_hook() |
| 63 | + |
| 64 | + def _get_features_hook(self, module, input, output): |
| 65 | + self.feature = output |
| 66 | + print("feature shape:{}".format(output.size())) |
| 67 | + |
| 68 | + def _get_grads_hook(self, module, input_grad, output_grad): |
| 69 | + """ |
| 70 | +
|
| 71 | + :param input_grad: tuple, input_grad[0]: None |
| 72 | + input_grad[1]: weight |
| 73 | + input_grad[2]: bias |
| 74 | + :param output_grad:tuple,长度为1 |
| 75 | + :return: |
| 76 | + """ |
| 77 | + self.gradient = output_grad[0] |
| 78 | + |
| 79 | + def _register_hook(self): |
| 80 | + for (name, module) in self.net.named_modules(): |
| 81 | + if name == self.layer_name: |
| 82 | + self.handlers.append(module.register_forward_hook(self._get_features_hook)) |
| 83 | + self.handlers.append(module.register_backward_hook(self._get_grads_hook)) |
| 84 | + |
| 85 | + def remove_handlers(self): |
| 86 | + for handle in self.handlers: |
| 87 | + handle.remove() |
| 88 | + |
| 89 | + def __call__(self, inputs, index=0): |
| 90 | + """ |
| 91 | +
|
| 92 | + :param inputs: {"image": [C,H,W], "height": height, "width": width} |
| 93 | + :param index: 第几个边框 |
| 94 | + :return: |
| 95 | + """ |
| 96 | + self.net.zero_grad() |
| 97 | + output = self.net.inference([inputs]) |
| 98 | + print(output) |
| 99 | + score = output[0]['instances'].scores[index] |
| 100 | + proposal_idx = output[0]['instances'].indices[index] # box来自第几个proposal |
| 101 | + score.backward() |
| 102 | + |
| 103 | + gradient = self.gradient[proposal_idx].cpu().data.numpy() # [C,H,W] |
| 104 | + weight = np.mean(gradient, axis=(1, 2)) # [C] |
| 105 | + |
| 106 | + feature = self.feature[0].cpu().data.numpy() # [C,H,W] |
| 107 | + |
| 108 | + cam = feature * weight[:, np.newaxis, np.newaxis] # [C,H,W] |
| 109 | + cam = np.sum(cam, axis=0) # [H,W] |
| 110 | + cam = np.maximum(cam, 0) # ReLU |
| 111 | + |
| 112 | + # 数值归一化 |
| 113 | + cam -= np.min(cam) |
| 114 | + cam /= np.max(cam) |
| 115 | + # resize to 224*224 |
| 116 | + box = output[0]['instances'].pred_boxes.tensor[index].detach().numpy().astype(np.int32) |
| 117 | + x1, y1, x2, y2 = box |
| 118 | + cam = cv2.resize(cam, (x2 - x1, y2 - y1)) |
| 119 | + |
| 120 | + class_id = output[0]['instances'].pred_classes[index].detach().numpy() |
| 121 | + return cam, box, class_id |
| 122 | + |
| 123 | + |
| 124 | +class GuidedBackPropagation(object): |
| 125 | + |
| 126 | + def __init__(self, net): |
| 127 | + self.net = net |
| 128 | + for (name, module) in self.net.named_modules(): |
| 129 | + if isinstance(module, nn.ReLU): |
| 130 | + module.register_backward_hook(self.backward_hook) |
| 131 | + self.net.eval() |
| 132 | + |
| 133 | + @classmethod |
| 134 | + def backward_hook(cls, module, grad_in, grad_out): |
| 135 | + """ |
| 136 | +
|
| 137 | + :param module: |
| 138 | + :param grad_in: tuple,长度为1 |
| 139 | + :param grad_out: tuple,长度为1 |
| 140 | + :return: tuple(new_grad_in,) |
| 141 | + """ |
| 142 | + return torch.clamp(grad_in[0], min=0.0), |
| 143 | + |
| 144 | + def __call__(self, inputs, index=0): |
| 145 | + """ |
| 146 | +
|
| 147 | + :param inputs: {"image": [C,H,W], "height": height, "width": width} |
| 148 | + :param index: 第几个边框 |
| 149 | + :return: |
| 150 | + """ |
| 151 | + self.net.zero_grad() |
| 152 | + output = self.net.inference([inputs]) |
| 153 | + score = output[0]['instances'].scores[index] |
| 154 | + score.backward() |
| 155 | + |
| 156 | + return inputs['image'].grad[0] # [3,H,W] |
| 157 | + |
| 158 | + |
| 159 | +def norm_image(image): |
| 160 | + """ |
| 161 | + 标准化图像 |
| 162 | + :param image: [H,W,C] |
| 163 | + :return: |
| 164 | + """ |
| 165 | + image = image.copy() |
| 166 | + image -= np.max(np.min(image), 0) |
| 167 | + image /= np.max(image) |
| 168 | + image *= 255. |
| 169 | + return np.uint8(image) |
| 170 | + |
| 171 | + |
| 172 | +def gen_cam(image, mask): |
| 173 | + """ |
| 174 | + 生成CAM图 |
| 175 | + :param image: [H,W,C],原始图像 |
| 176 | + :param mask: [H,W],范围0~1 |
| 177 | + :return: tuple(cam,heatmap) |
| 178 | + """ |
| 179 | + # mask转为heatmap |
| 180 | + heatmap = cv2.applyColorMap(np.uint8(255 * mask), cv2.COLORMAP_JET) |
| 181 | + heatmap = np.float32(heatmap) / 255 |
| 182 | + heatmap = heatmap[..., ::-1] # gbr to rgb |
| 183 | + |
| 184 | + # 合并heatmap到原始图像 |
| 185 | + cam = heatmap + np.float32(image) |
| 186 | + return norm_image(cam), heatmap |
| 187 | + |
| 188 | + |
| 189 | +def gen_gb(grad): |
| 190 | + """ |
| 191 | + 生guided back propagation 输入图像的梯度 |
| 192 | + :param grad: tensor,[3,H,W] |
| 193 | + :return: |
| 194 | + """ |
| 195 | + # 标准化 |
| 196 | + grad = grad.data.numpy() |
| 197 | + gb = np.transpose(grad, (1, 2, 0)) |
| 198 | + return gb |
| 199 | + |
| 200 | + |
| 201 | +def save_image(image_dicts, input_image_name, network='frcnn', output_dir='./results'): |
| 202 | + prefix = os.path.splitext(input_image_name)[0] |
| 203 | + for key, image in image_dicts.items(): |
| 204 | + io.imsave(os.path.join(output_dir, '{}-{}-{}.jpg'.format(prefix, network, key)), image) |
| 205 | + |
| 206 | + |
| 207 | +def get_parser(): |
| 208 | + parser = argparse.ArgumentParser(description="Detectron2 demo for builtin models") |
| 209 | + parser.add_argument( |
| 210 | + "--config-file", |
| 211 | + default="configs/quick_schedules/mask_rcnn_R_50_FPN_inference_acc_test.yaml", |
| 212 | + metavar="FILE", |
| 213 | + help="path to config file", |
| 214 | + ) |
| 215 | + parser.add_argument("--input", help="A list of space separated input images") |
| 216 | + parser.add_argument( |
| 217 | + "--output", |
| 218 | + help="A file or directory to save output visualizations. " |
| 219 | + "If not given, will show output in an OpenCV window.", |
| 220 | + ) |
| 221 | + |
| 222 | + parser.add_argument( |
| 223 | + "--confidence-threshold", |
| 224 | + type=float, |
| 225 | + default=0.5, |
| 226 | + help="Minimum score for instance predictions to be shown", |
| 227 | + ) |
| 228 | + parser.add_argument( |
| 229 | + "--opts", |
| 230 | + help="Modify config options using the command-line 'KEY VALUE' pairs", |
| 231 | + default=[], |
| 232 | + nargs=argparse.REMAINDER, |
| 233 | + ) |
| 234 | + return parser |
| 235 | + |
| 236 | + |
| 237 | +if __name__ == "__main__": |
| 238 | + """ |
| 239 | + Usage:export KMP_DUPLICATE_LIB_OK=TRUE |
| 240 | + python detection/demo.py --config-file detection/faster_rcnn_R_50_C4.yaml \ |
| 241 | + --input ./examples/pic1.jpg \ |
| 242 | + --opts MODEL.WEIGHTS /Users/yizuotian/pretrained_model/model_final_b1acc2.pkl MODEL.DEVICE cpu |
| 243 | + """ |
| 244 | + mp.set_start_method("spawn", force=True) |
| 245 | + args = get_parser().parse_args() |
| 246 | + setup_logger(name="fvcore") |
| 247 | + logger = setup_logger() |
| 248 | + logger.info("Arguments: " + str(args)) |
| 249 | + |
| 250 | + cfg = setup_cfg(args) |
| 251 | + print(cfg) |
| 252 | + # 构建模型 |
| 253 | + model = build_model(cfg) |
| 254 | + # 加载权重 |
| 255 | + checkpointer = DetectionCheckpointer(model) |
| 256 | + checkpointer.load(cfg.MODEL.WEIGHTS) |
| 257 | + |
| 258 | + # 加载图像 |
| 259 | + path = os.path.expanduser(args.input) |
| 260 | + original_image = read_image(path, format="BGR") |
| 261 | + height, width = original_image.shape[:2] |
| 262 | + transform_gen = T.ResizeShortestEdge( |
| 263 | + [cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST |
| 264 | + ) |
| 265 | + image = transform_gen.get_transform(original_image).apply_image(original_image) |
| 266 | + image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1)).requires_grad_(True) |
| 267 | + |
| 268 | + inputs = {"image": image, "height": height, "width": width} |
| 269 | + |
| 270 | + # Grad-CAM |
| 271 | + layer_name = get_last_conv_name(model) |
| 272 | + grad_cam = GradCAM(model, layer_name) |
| 273 | + mask, box, class_id = grad_cam(inputs) # cam mask |
| 274 | + grad_cam.remove_handlers() |
| 275 | + # |
| 276 | + image_dict = {} |
| 277 | + img = original_image[..., ::-1] |
| 278 | + x1, y1, x2, y2 = box |
| 279 | + image_dict['predict_box'] = img[y1:y2, x1:x2] |
| 280 | + image_cam, image_dict['heatmap'] = gen_cam(img[y1:y2, x1:x2], mask) |
| 281 | + |
| 282 | + # 获取类别名称 |
| 283 | + meta = MetadataCatalog.get( |
| 284 | + cfg.DATASETS.TEST[0] if len(cfg.DATASETS.TEST) else "__unused" |
| 285 | + ) |
| 286 | + label = meta.thing_classes[class_id] |
| 287 | + |
| 288 | + print("label:{}".format(label)) |
| 289 | + # GuidedBackPropagation |
| 290 | + # gbp = GuidedBackPropagation(model) |
| 291 | + # inputs['image'].grad.zero_() # 梯度置零 |
| 292 | + # grad = gbp(inputs) |
| 293 | + # print("grad.shape:{}".format(grad.shape)) |
| 294 | + # gb = gen_gb(grad) |
| 295 | + # image_dict['gb'] = gb |
| 296 | + # 生成Guided Grad-CAM |
| 297 | + # cam_gb = gb * mask[..., np.newaxis] |
| 298 | + # image_dict['cam_gb'] = norm_image(cam_gb) |
| 299 | + |
| 300 | + save_image(image_dict, os.path.basename(path)) |
0 commit comments