-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
211 lines (179 loc) · 9.34 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from flask import Flask, request, render_template, flash, redirect, url_for
import pandas as pd
import numpy as np
import joblib
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import mysql.connector
from models.RBM import RBM, rbm_calculate_rmse, scaler
from utils.database import get_db_connection
from models.collaborative_filtering import user_based_recommendations, item_based_recommendations, \
cosine_similarity_manual
from models.deep_learning_model import DeepLearningRecommender
app = Flask(__name__)
app.secret_key = 'your_secret_key'
# 初始化深度学习推荐模型
dl_recommender = DeepLearningRecommender()
# 读取深度学习模型的RMSE
with open('models/deep_learning_rmse.txt', 'r') as f:
deep_learning_rmse = float(f.readline().strip())
# 加载线性回归模型和映射
linear_regression_model = joblib.load('models/linear_regression_model.pkl')
user_id_map = joblib.load('models/user_id_map.pkl')
movie_id_map = joblib.load('models/movie_id_map.pkl')
def get_data_from_db():
try:
db = get_db_connection()
cursor = db.cursor()
cursor.execute("SELECT * FROM ratings")
ratings = pd.DataFrame(cursor.fetchall(), columns=['userId', 'movieId', 'rating', 'timestamp'])
cursor.execute("SELECT * FROM movies")
movies = pd.DataFrame(cursor.fetchall(), columns=['movieId', 'title', 'genres'])
cursor.close()
db.close()
return ratings, movies
except mysql.connector.Error as err:
print(f"Error: {err}")
return None, None
def calculate_rmse(predictions, actual):
predictions = predictions[actual.nonzero()].flatten()
actual = actual[actual.nonzero()].flatten()
return np.sqrt(mean_squared_error(predictions, actual))
def predict_ratings(matrix, similarity, type='user'):
if type == 'user':
return similarity.dot(matrix) / np.array([np.abs(similarity).sum(axis=1)]).T
elif type == 'item':
return matrix.dot(similarity) / np.array([np.abs(similarity).sum(axis=1)])
# 初始加载数据和矩阵
ratings, movies = get_data_from_db()
if ratings is None or movies is None:
raise ValueError("Failed to load data from the database")
dl_recommender.prepare_data(ratings) # 准备深度学习推荐模型的数据
#训练协同过滤
train_data, test_data = train_test_split(ratings, test_size=0.2, random_state=42)
train_matrix = train_data.pivot_table(index='userId', columns='movieId', values='rating').fillna(0)
test_matrix = test_data.pivot_table(index='userId', columns='movieId', values='rating').fillna(0)
user_similarity = cosine_similarity_manual(train_matrix)
item_similarity = cosine_similarity_manual(train_matrix.T)
user_prediction = predict_ratings(train_matrix.values, user_similarity, type='user')
item_prediction = predict_ratings(train_matrix.values, item_similarity, type='item')
user_rmse = calculate_rmse(user_prediction, test_matrix.values)
item_rmse = calculate_rmse(item_prediction, test_matrix.values)
# 计算线性回归模型的 RMSE
X_test = test_data[['userId', 'movieId']].copy()
X_test['user_id'] = X_test['userId'].map(user_id_map)
X_test['movie_id'] = X_test['movieId'].map(movie_id_map)
y_test = test_data['rating']
y_pred = linear_regression_model.predict(X_test[['user_id', 'movie_id']])
linear_regression_rmse = np.sqrt(mean_squared_error(y_test, y_pred))
# 初始化和训练RBM
visible_units = train_matrix.shape[1]
hidden_units = 64 # 隐层节点数量可调整
rbm = RBM(visible_units, hidden_units, learning_rate=0.01, epochs=10, batch_size=10, regularization=0.01)
rbm.train(train_matrix.values)
with open('rbm_rmse.txt', 'r') as f:
rbm_rmse = float(f.readline().strip())
@app.route('/')
def home():
return render_template('index.html', user_rmse=user_rmse, item_rmse=item_rmse,
deep_learning_rmse=deep_learning_rmse, linear_regression_rmse=linear_regression_rmse,RBM_rmse=rbm_rmse)
@app.route('/recommend', methods=['GET'])
def recommend():
try:
user_id = int(request.args.get('user_id'))
num_recommendations = int(request.args.get('num_recommendations', 5))
algorithm = request.args.get('algorithm')
if user_id not in train_matrix.index:
flash("User ID not found in the database", "danger")
return redirect(url_for('home'))
if algorithm == 'item_based':
recommendations = item_based_recommendations(user_id, train_matrix, movies, num_recommendations)
elif algorithm == 'user_based':
recommendations = user_based_recommendations(user_id, train_matrix, movies, num_recommendations)
elif algorithm == 'deep_learning': # 新增
recommended_items = dl_recommender.recommend(user_id, num_recommendations)
recommendations = [{
'movieId': item_id,
'title': movies[movies['movieId'] == item_id]['title'].values[0],
'genres': movies[movies['movieId'] == item_id]['genres'].values[0],
'score': score
} for item_id, score in recommended_items]
elif algorithm == 'linear_regression': # 新增线性回归模型推荐算法
if user_id in user_id_map:
user_idx = user_id_map[user_id]
recommendations = []
for movie_id in movie_id_map.keys():
movie_idx = movie_id_map[movie_id]
score = linear_regression_model.predict([[user_idx, movie_idx]])[0]
recommendations.append({
'movieId': movie_id,
'title': movies[movies['movieId'] == movie_id]['title'].values[0],
'genres': movies[movies['movieId'] == movie_id]['genres'].values[0],
'score': score
})
recommendations = sorted(recommendations, key=lambda x: x['score'], reverse=True)[:num_recommendations]
else:
recommendations = []
elif algorithm == 'rbm': # 新增RBM推荐算法
user_ratings = train_matrix.loc[user_id].values.reshape(1, -1)
predicted_ratings = rbm.predict(user_ratings).numpy().flatten()
recommended_indices = np.argsort(predicted_ratings)[::-1][:num_recommendations]
recommendations = []
for idx in recommended_indices:
movie_id = train_matrix.columns[idx]
recommendations.append({
'movieId': movie_id,
'title': movies[movies['movieId'] == movie_id]['title'].values[0],
'genres': movies[movies['movieId'] == movie_id]['genres'].values[0],
'score': predicted_ratings[idx]
})
else:
recommendations = []
return render_template('recommendations.html', recommendations=recommendations, user_id=user_id)
except ValueError:
flash("Invalid input. Please enter valid user ID and number of recommendations.", "danger")
return redirect(url_for('home'))
except Exception as e:
flash(f"An error occurred: {e}", "danger")
return redirect(url_for('home'))
@app.route('/new_user', methods=['GET', 'POST'])
def new_user():
if request.method == 'POST':
user_id = int(request.form.get('user_id'))
# 检查user_id是否已存在
global ratings, movies, train_matrix, user_similarity, item_similarity
if user_id in ratings['userId'].values:
flash("User ID already exists. Please choose a different User ID.", "danger")
return redirect(url_for('new_user'))
ratings_dict = {}
for movie_id, rating in request.form.items():
if movie_id.startswith('movie_'):
movie_id = int(movie_id.split('_')[1])
ratings_dict[movie_id] = float(rating)
# 将新用户的评分添加到数据库中
db = get_db_connection()
cursor = db.cursor()
for movie_id, rating in ratings_dict.items():
cursor.execute("""
INSERT INTO ratings (userId, movieId, rating, timestamp)
VALUES (%s, %s, %s, %s)
ON DUPLICATE KEY UPDATE rating=%s, timestamp=%s
""", (user_id, movie_id, rating, int(pd.Timestamp.now().timestamp()), rating,
int(pd.Timestamp.now().timestamp())))
db.commit()
cursor.close()
db.close()
# 重新加载数据和更新矩阵
ratings, movies = get_data_from_db()
dl_recommender.prepare_data(ratings)
train_matrix = ratings.pivot_table(index='userId', columns='movieId', values='rating').fillna(0)
user_similarity = cosine_similarity_manual(train_matrix)
item_similarity = cosine_similarity_manual(train_matrix.T)
flash("Thank you for providing your ratings!", "success")
return redirect(url_for('recommend', user_id=user_id, num_recommendations=5, algorithm='user_based'))
else:
# 随机选择一些电影供新用户评分
sample_movies = movies.sample(5).to_dict(orient='records')
return render_template('new_user.html', sample_movies=sample_movies)
if __name__ == '__main__':
app.run(debug=True)