|
| 1 | +''' |
| 2 | +Generate ILSVRC2012 Dataset LMDB file |
| 3 | +''' |
| 4 | +import io |
| 5 | +import os |
| 6 | +import pathlib |
| 7 | +import struct |
| 8 | +import sys |
| 9 | +import time |
| 10 | + |
| 11 | +import PIL.Image |
| 12 | +import lmdb |
| 13 | +import msgpack |
| 14 | + |
| 15 | +import scipy.io |
| 16 | +import cytoolz as tz |
| 17 | +import numpy as np |
| 18 | + |
| 19 | +# Prepare |
| 20 | +IMAGE_DIR = os.environ['IMAGE_DIR'] |
| 21 | +DK_DIR = os.environ['DK_DIR'] |
| 22 | +MDB_OUT_DIR = os.environ['MDB_OUT_DIR'] |
| 23 | + |
| 24 | +seed = 42 |
| 25 | +np.random.seed(seed) |
| 26 | + |
| 27 | +lmdb_map_size = 50*1024*1024*1024 |
| 28 | +lmdb_txn_size = 500 |
| 29 | + |
| 30 | +# Setup PATHs |
| 31 | +META_PATH = os.path.join(DK_DIR, 'data', 'meta.mat') |
| 32 | +META_MP_PATH = os.path.join(MDB_OUT_DIR, 'meta.msgpack') |
| 33 | +LMDB_PATH = os.path.join(MDB_OUT_DIR, 'ILSVRC2012_image_train.mdb') |
| 34 | + |
| 35 | +# Generate meta.msgpack |
| 36 | +meta = scipy.io.loadmat(META_PATH, squeeze_me=True) |
| 37 | +synsets = meta['synsets'] |
| 38 | + |
| 39 | +meta_info = [{ |
| 40 | + 'ILSVRC2012_ID': int(s['ILSVRC2012_ID']), |
| 41 | + 'WNID': str(s['WNID']), |
| 42 | + 'words': str(s['words']), |
| 43 | + 'gloss': str(s['gloss']), |
| 44 | + 'wordnet_height': int(s['wordnet_height']), |
| 45 | + 'num_train_images': int(s['num_train_images']) |
| 46 | +} for s in synsets] |
| 47 | + |
| 48 | +meta_info_packed = msgpack.packb(meta_info, use_bin_type=True) |
| 49 | + |
| 50 | +with open(META_MP_PATH, 'wb') as f: |
| 51 | + f.write(meta_info_packed) |
| 52 | + |
| 53 | +# Generate LMDB |
| 54 | +def make_context(): |
| 55 | + return { |
| 56 | + 'image_id': 0, |
| 57 | + 'clock_beg': time.time(), |
| 58 | + 'clock_end': time.time(), |
| 59 | + } |
| 60 | + |
| 61 | + |
| 62 | +def process_image_one(txn, image_id, wordnet_id, label, image_abspath): |
| 63 | + ''' |
| 64 | + txn: lmdb transaction object |
| 65 | + image_id: int |
| 66 | + The image id, increasing index |
| 67 | + wordnet_id: str |
| 68 | + The wordnet id, i.e. n07711569 |
| 69 | + image_abspath: str |
| 70 | + The image's absolute path |
| 71 | + ''' |
| 72 | + with PIL.Image.open(image_abspath) as im, io.BytesIO() as bio: |
| 73 | + if im.mode != 'RGB': |
| 74 | + im = im.convert('RGB') |
| 75 | + rows, cols = im.size |
| 76 | + cnls = 3 |
| 77 | + im.resize((256, 256)) |
| 78 | + im.save(bio, format='webp') |
| 79 | + image_bytes = bio.getvalue() |
| 80 | + |
| 81 | + filename = os.path.basename(image_abspath).rstrip('.JPEG') |
| 82 | + |
| 83 | + info = { |
| 84 | + 'wordnet_id': wordnet_id, |
| 85 | + 'filename': filename, |
| 86 | + 'image': image_bytes, |
| 87 | + 'rows': rows, |
| 88 | + 'cols': cols, |
| 89 | + 'cnls': cnls, |
| 90 | + 'label': label, |
| 91 | + } |
| 92 | + key = '{:08d}'.format(image_id).encode() |
| 93 | + txn.put(key, msgpack.packb(info, use_bin_type=True)) |
| 94 | + |
| 95 | + |
| 96 | +def imagenet_walk(wnid_meta_map, image_Dir): |
| 97 | + def get_category_image_abspaths(Path): |
| 98 | + return [str(f.absolute()) for f in Path.iterdir() if f.is_file()] |
| 99 | + |
| 100 | + def process_category_one(count, category_Path): |
| 101 | + wordnet_id = category_Path.name |
| 102 | + metainfo = wnid_meta_map[wordnet_id] |
| 103 | + words = metainfo['words'] |
| 104 | + gloss = metainfo['gloss'] |
| 105 | + label = metainfo['ILSVRC2012_ID'] |
| 106 | + |
| 107 | + print('Process count=%d, label=%d, wordnet_id=%s' % (count, label, wordnet_id)) |
| 108 | + print(' %s: %s' % (words, gloss)) |
| 109 | + for image_abspath in get_category_image_abspaths(category_Path): |
| 110 | + yield { |
| 111 | + 'label': label, |
| 112 | + 'wordnet_id': wordnet_id, |
| 113 | + 'image_abspath': image_abspath |
| 114 | + } |
| 115 | + |
| 116 | + categories = [d for d in image_Dir.iterdir() if d.is_dir()] |
| 117 | + |
| 118 | + image_files = [ |
| 119 | + image_info |
| 120 | + for count, category_Path in enumerate(categories) |
| 121 | + for image_info in process_category_one(count, category_Path) |
| 122 | + ] |
| 123 | + return image_files |
| 124 | + |
| 125 | + |
| 126 | +def process_images(ctx, lmdb_env, image_infos, image_total): |
| 127 | + image_id = ctx['image_id'] |
| 128 | + |
| 129 | + with lmdb_env.begin(write=True) as txn: |
| 130 | + for image_info in image_infos: |
| 131 | + wordnet_id = image_info['wordnet_id'] |
| 132 | + label = image_info['label'] |
| 133 | + image_abspath = image_info['image_abspath'] |
| 134 | + process_image_one(txn, image_id, wordnet_id, label, image_abspath) |
| 135 | + image_id = image_id + 1 |
| 136 | + |
| 137 | + clock_beg = ctx['clock_beg'] |
| 138 | + clock_end = time.time() |
| 139 | + |
| 140 | + elapse = clock_end - clock_beg |
| 141 | + elapse_h = int(elapse) // 60 // 60 |
| 142 | + elapse_m = int(elapse) // 60 % 60 |
| 143 | + elapse_s = int(elapse) % 60 |
| 144 | + |
| 145 | + estmt = (image_total - image_id) / image_id * elapse |
| 146 | + estmt_h = int(estmt) // 60 // 60 |
| 147 | + estmt_m = int(estmt) // 60 % 60 |
| 148 | + estmt_s = int(estmt) % 60 |
| 149 | + |
| 150 | + labels = [image_info['label'] for image_info in image_infos] |
| 151 | + print('ImageId: {:8d}/{:8d}, time: {:2d}h/{:2d}m/{:2d}s, remain: {:2d}h/{:2d}m/{:2d}s, Sample: {} ...'.format( |
| 152 | + image_id, image_total, |
| 153 | + elapse_h, elapse_m, elapse_s, |
| 154 | + estmt_h, estmt_m, estmt_s, |
| 155 | + str(labels)[:80])) |
| 156 | + |
| 157 | + ctx['image_id'] = image_id |
| 158 | + ctx['clock_end'] = clock_end |
| 159 | + |
| 160 | + |
| 161 | +wnid_meta_map = { m['WNID']: m for m in meta_info } |
| 162 | + |
| 163 | +image_train_env = lmdb.open(LMDB_PATH, map_size=lmdb_map_size) |
| 164 | + |
| 165 | +image_infos = imagenet_walk(wnid_meta_map, pathlib.Path(IMAGE_DIR)) |
| 166 | +image_total = len(image_infos) |
| 167 | +np.random.shuffle(image_infos) |
| 168 | + |
| 169 | +ctx = make_context() |
| 170 | +for image_infos_partial in tz.partition_all(lmdb_txn_size, image_infos): |
| 171 | + process_images(ctx, image_train_env, image_infos_partial, image_total) |
0 commit comments