-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPlotting_Graphs.py
186 lines (166 loc) · 5.81 KB
/
Plotting_Graphs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import pylab as plt
def readProductsLifeTimeData(filePath):
numDays = []
with open(filePath, 'r') as fp:
for line in fp:
row = line.split('\n')
numDays.append(int(row[0]))
return numDays
def computeRangesfromProductsNumDays(numDays):
numProducts = len(numDays)
maxLength = max(numDays)
numperiods = int(maxLength / 180)
periods = []
months = []
for i in range(numperiods):
periods.append(i * 180)
months.append(int(periods[i] / 30))
if periods[len(periods) - 1] < maxLength:
periods.append(maxLength)
months.append(int(maxLength / 30))
periodsDict = dict()
for i in range(len(periods) - 1):
periodsDict[(periods[i], periods[i + 1])] = 0
for days in numDays:
for key, value in periodsDict.items():
start = key[0]
end = key[1]
if days > start and days <= end:
newVal = value + 1
periodsDict[key] = newVal
x = []
y = []
numProducts = 0
for per in periods:
for key, value in periodsDict.items():
if key[0] == per:
numProducts += value
x.append(key)
y.append(value)
break
lastMonth = months[-1]
x = months
if len(x)>len(y):
del x[-1]
x[len(x)-1] = lastMonth
return x,y,numProducts
def plotHistogram(x,y,title,xLable,yLabel,catName,show):
plt.title(title)
plt.xlabel(xLable)
plt.ylabel(yLabel)
plt.hist(x, len(x),weights=y)
plt.show()
return plt
def computeAndPlotPorductCategoryLifeSpanData(catName,show):
filePath = "C:\Yassien_RMIT PhD\Datasets\TruthDiscovery_Datasets\Web data Amazon reviews/Unique_Products_Stanford_three/Experiment 2/Categories_Lifetime/" + catName + ".txt"
numDays = readProductsLifeTimeData(filePath)
x, y,numProducts = computeRangesfromProductsNumDays(numDays)
title = catName+" Products LifeSpan Distributions("+str(numProducts)+")"
xlabel = "Number of Months "
ylabel = "Number of Products"
plotHistogram(x, y, title, xlabel, ylabel)
return
def computeAndPlotPorductCategoryLifeSpanDataForCombination(catName,xs,ys):
filePath = "C:\Yassien_RMIT PhD\Datasets\TruthDiscovery_Datasets\Web data Amazon reviews/Unique_Products_Stanford_three/Experiment 2/Categories_Lifetime/" + catName + ".txt"
numDays = readProductsLifeTimeData(filePath)
x, y,numProducts = computeRangesfromProductsNumDays(numDays)
xs.append(x)
ys.append(y)
return xs,ys
''''
catName = "Video Games"
categoryNameList = ["Arts, Crafts & Sewing","Cell Phones & Accessories","Computers & Accessories","Electronics","Industrial & Scientific","Jewelry","Software","Toys & Games","Video Games"]
xs = []
ys = []
for cat in categoryNameList:
xs,ys=computeAndPlotPorductCategoryLifeSpanDataForCombination(cat,xs,ys)
for i in range(len(xs)):
plt.hist(xs[i], len(xs[i]),alpha=0.5, weights=ys[i],label=categoryNameList[i])
plt.legend(loc='upper right')
plt.title("Products LifeSpan Distributions")
plt.xlabel("Number of Months")
plt.ylabel("Number of Products")
plt.show()
'''
from temp_Function import analyzeProduct
from datetime import timedelta
productBaseDirectory= "C:\Yassien_RMIT PhD\Datasets\TruthDiscovery_Datasets\Web data Amazon reviews/Unique_Products_Stanford_three/Product_Reviews/"
productId = "B001HDOQHM"
ratingTemproalCategory, ratingHelpfulnessCategory, n, average,numReviews,numFeedBackPerDayDictionary,numHelpFeedPerDayDictionary,ratingsDateDictionary = analyzeProduct(productBaseDirectory,productId)
print("Actual Num Reviews")
print(numReviews)
#print(ratingTemproalCategory)
#print("ratingsDateDictionary")
#print(ratingsDateDictionary)
datesrating = []
for key,value in ratingsDateDictionary.items():
for val in value:
datesrating.append((val,key))
datesrating=sorted(datesrating)
#for daterate in datesrating:
# print(daterate[0])
proportionalPeriods = []
numRviewsCutoff = int(numReviews/10)
index= 0
proportionalPeriods.append(datesrating[0][0])
for daterate in datesrating:
#print(daterate[1])
if index == numRviewsCutoff :
proportionalPeriods.append(daterate[0])
index=0
else:
index+=1
if index!=0:
proportionalPeriods.append(datesrating[len(datesrating)-1][0])
print("numRviewsCutoff")
print(numRviewsCutoff)
print("proportionalPeriods")
print(len(proportionalPeriods))
print(proportionalPeriods)
for i in range(len(proportionalPeriods)-1):
print((proportionalPeriods[i+1]-proportionalPeriods[i]).days)
numDaysDiff = (datesrating[len(datesrating)-1][0]-datesrating[0][0]).days
print("numDaysDiff")
print(numDaysDiff)
print("numMonths")
numMonths = int(numDaysDiff/30)
print(numMonths)
print("numYears")
print(int(numMonths/12))
pace = int(numDaysDiff/10)
print("pace")
print(pace)
periods = []
current = datesrating[0][0]
periods.append(current)
for i in range(10):
current = current + timedelta(days=pace)
periods.append(current)
if periods[len(periods)-1]<datesrating[len(datesrating)-1][0]:
del periods[-1]
periods.append(datesrating[len(datesrating)-1][0])
#print("Periods")
#print(len(periods))
#print(periods)
numReviewsPerPeriod = dict()
totalNumReviews = 0
for daterate in datesrating:
date = daterate[0]
rate = daterate[1]
periodID = 0
for i in range(len(periods)-1):
if date >=periods[i]and date<=periods[i+1]:
periodID = i
try:
numReviews = numReviewsPerPeriod[i]+1
numReviewsPerPeriod[i]=numReviews
totalNumReviews+=1
except KeyError:
numReviewsPerPeriod[i] = 1
totalNumReviews += 1
print("numReviewsPerPeriod")
print(numReviewsPerPeriod)
for key,value in numReviewsPerPeriod.items():
print(str(key+1)+" "+str(value))
print("totalNumReviews read")
print(totalNumReviews)