-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmusic_gan.py
169 lines (144 loc) · 6.6 KB
/
music_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
import numpy as np
import librosa
import tensorflow as tf
from tensorflow.keras import layers, models
import glob
import soundfile as sf
import IPython.display as ipd
class MusicGAN:
def __init__(self, directory='input_data/fma_small', duration=5, sr=22050, latent_dim=100, epochs=10000, batch_size=16):
self.directory = directory
self.duration = duration
self.sr = sr
self.latent_dim = latent_dim
self.epochs = epochs
self.batch_size = batch_size
self.generator = self.build_generator()
self.discriminator = self.build_discriminator()
self.gan = self.compile_gan()
def load_data(self):
"""
Load and preprocess audio data from the specified directory.
Returns:
np.array: Preprocessed audio data as spectrograms.
"""
files = glob.glob(os.path.join(self.directory, '*.mp3'))[:1000] # Limit to 1000 files for demonstration
data = []
for file in files:
audio, _ = librosa.load(file, sr=self.sr, duration=self.duration)
spectrogram = librosa.stft(audio)
spectrogram = np.abs(spectrogram)
spectrogram = librosa.amplitude_to_db(spectrogram, ref=np.max)
data.append(spectrogram)
data = np.array(data)
print("Data Length ",data.shape)
return data
def build_generator(self):
model = tf.keras.Sequential([
layers.Dense(512, activation='relu', input_dim=self.latent_dim),
layers.BatchNormalization(),
layers.Dense(1024, activation='relu'),
layers.BatchNormalization(),
layers.Dense(2048, activation='sigmoid')
])
return model
def build_discriminator(self, data_shape=2048):
model = tf.keras.Sequential([
layers.Dense(1024, activation='relu', input_shape=(data_shape,)),
layers.Dense(512, activation='relu'),
layers.Dense(1, activation='sigmoid')
])
return model
def compile_gan(self):
self.discriminator.compile(loss='binary_crossentropy', optimizer='adam')
self.discriminator.trainable = False
gan_input = layers.Input(shape=(self.latent_dim,))
gan_output = self.discriminator(self.generator(gan_input))
gan = models.Model(gan_input, gan_output)
gan.compile(loss='binary_crossentropy', optimizer='adam')
return gan
def train(self, data):
if len(data)==0:
print("Exiting no data to train the model")
return False
for epoch in range(self.epochs):
# Sample random points in the latent space
random_latent_vectors = np.random.normal(0, 1, (self.batch_size, self.latent_dim))
# Generate fake audio data
generated_data = self.generator.predict(random_latent_vectors)
# Mix them with real data
real_data = data[np.random.randint(0, data.shape[0], self.batch_size)]
combined_data = np.vstack((generated_data, real_data))
# Assemble labels discriminating real from fake data
labels = np.concatenate([np.zeros(self.batch_size), np.ones(self.batch_size)])
# Train discriminator
d_loss = self.discriminator.train_on_batch(combined_data, labels)
# Train generator
misleading_targets = np.ones(self.batch_size)
g_loss = self.gan.train_on_batch(random_latent_vectors, misleading_targets)
# Logging progress
if epoch % 100 == 0:
print(f"Epoch {epoch}/{self.epochs}, Discriminator loss: {d_loss}, Generator loss: {g_loss}")
return True
def generate_music(self):
"""
Generate music using the trained generator.
Returns:
np.array: Generated spectrogram.
"""
random_latent_vectors = np.random.normal(0, 1, (1, self.latent_dim))
generated_spectrogram = self.generator.predict(random_latent_vectors)[0]
return generated_spectrogram
def save_models(self):
"""Saves the generator and discriminator models to files."""
self.generator.save('gan_generator.h5')
self.discriminator.save('gan_discriminator.h5')
print("Models saved successfully.")
def load_generator(self, generator_path='gan_generator.h5'):
"""Loads the generator model from a file."""
self.generator = tf.keras.models.load_model(generator_path)
print("Generator model loaded successfully.")
def load_discriminator(self, discriminator_path='gan_discriminator.h5'):
"""Loads the discriminator model from a file."""
self.discriminator = tf.keras.models.load_model(discriminator_path)
print("Discriminator model loaded successfully.")
def spectrogram_to_audio(self, spectrogram, save_path=None, play_audio=False):
"""
Convert a spectrogram back to an audio waveform and optionally save or play it.
Parameters:
spectrogram (np.array): The generated spectrogram.
save_path (str): Path to save the audio file. If None, the audio is not saved.
play_audio (bool): Whether to play the audio using IPython display.
Returns:
np.array: The time-domain audio signal.
"""
# Assuming the spectrogram is in dB, convert it back to amplitude
spectrogram = librosa.db_to_amplitude(spectrogram)
# Inverse STFT to convert back to time domain audio signal
audio = librosa.istft(spectrogram)
# Normalize audio to prevent potential clipping
audio = np.clip(audio, -1, 1)
# Save audio if a path is provided
if save_path:
sf.write(save_path, audio, self.sr, format='wav')
print(f"Audio saved to {save_path}")
# Play audio if requested
if play_audio:
ipd.display(ipd.Audio(audio, rate=self.sr))
return audio
if __name__ == '__main__':
gan = MusicGAN()
data = gan.load_data()
result = gan.train(data)
if result == True:
generated_spectrogram = gan.generate_music()
# Convert generated spectrogram to audio, save, and play
audio_signal = gan.spectrogram_to_audio(generated_spectrogram, save_path='generated_music.wav', play_audio=True)
gan.save_models()
# To generate music using a pre-trained generator
gan.load_generator()
generated_spectrogram = gan.generate_music()
# Convert generated spectrogram to audio, save, and play
audio_signal = gan.spectrogram_to_audio(generated_spectrogram, save_path='generated_music.wav', play_audio=True)
print("Exiting")