-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgene_classifier.py
87 lines (57 loc) · 2.4 KB
/
gene_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import tensorflow as tf
import dataset
# from tensorflow.examples.tutorials.mnist import input_data
# mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
x = tf.placeholder(tf.float32, shape=[ None, 10936])
y = tf.placeholder(tf.float32, shape=[ None, 2])
#x_reshaped = tf.reshape(x, shape=[ -1, 784 ])
# Layer 1
w1 = tf.Variable(tf.truncated_normal(shape=(10936, 100), mean=0, stddev=0.1))
b1 = tf.Variable(tf.zeros([100]))
linear_1 = tf.matmul(x, w1) + b1
act_1 = tf.nn.sigmoid(linear_1)
# Layer 2
w2 = tf.Variable(tf.truncated_normal(shape=(100, 100), mean=0, stddev=0.1))
b2 = tf.Variable(tf.zeros([100]))
linear_2 = tf.matmul(act_1, w2) + b2
act_2 = tf.nn.sigmoid(linear_2)
# Layer 3
w3 = tf.Variable(tf.truncated_normal(shape=(100, 2), mean=0, stddev=0.1))
b3 = tf.Variable(tf.zeros([2]))
logits = tf.matmul(act_2, w3) + b3
prediction = tf.nn.softmax(logits)
#act_3 = tf.nn.sigmoid(linear_3)
lr = tf.placeholder(tf.float32)
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
optimizer = tf.train.GradientDescentOptimizer(lr).minimize(cross_entropy)
correct_predictions = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_predictions, tf.float32))
epochs = 50
learning_rate = 0.1
batch_size = 100
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print(f'''
Running session with:
Epochs: {epochs:>3d}
Learning Rate: {learning_rate:>6.3f}
Batch Size: {batch_size:>3d}''')
for epoch in range(epochs):
# for batch in range(mnist.train.num_examples//batch_size):
x_train, y_train = dataset.train_list, dataset.train_label
feed_dict = {
x : x_train,
y : y_train,
lr : learning_rate }
_, loss = sess.run([optimizer, cross_entropy], feed_dict = feed_dict)
# Calculate validation accuracy every epoch.
valid_acc = sess.run(accuracy, feed_dict = {
x : dataset.validation_list,
y : dataset.validation_label})
print(f'Epoch: {epoch:>5d}; Loss: {loss: >10.3f}; Validation Accuracy: {valid_acc:>1.4f}')
#import pdb;pdb.set_trace()
test_accuracy = sess.run(accuracy, feed_dict = {
x : dataset.test_list,
y : dataset.test_label})
print(f'Final test accuracy: {test_accuracy:>2.2f}')
tf.reset_default_graph()