-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutility.py
110 lines (75 loc) · 3 KB
/
utility.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import numpy as np
from scipy.stats import skew
from scipy.signal import welch
eps = 0.00000001
# Computes zero crossing rate of frame
def zero_crossing_rate(frame):
count = len(frame)
count_zero = np.sum(np.abs(np.diff(np.sign(frame)))) / 2
return np.float64(count_zero) / np.float64(count - 1.0)
# Computes the spectral entropy (time and frequency)
def spectral_entropy(signal, n_short_blocks=10):
# number of frame samples
num_frames = len(signal)
# total spectral energy
total_energy = np.sum(signal ** 2)
# length of sub-frame
sub_win_len = int(np.floor(num_frames / n_short_blocks))
if num_frames != sub_win_len * n_short_blocks:
signal = signal[0:sub_win_len * n_short_blocks]
# define sub-frames (using matrix reshape)
sub_wins = signal.reshape(sub_win_len, n_short_blocks, order='F').copy()
# compute spectral sub-energies
s = np.sum(sub_wins ** 2, axis=0) / (total_energy + eps)
# compute spectral entropy
entropy = -np.sum(s * np.log2(s + eps))
return entropy
# Computes spectral centroid of frame (given abs(FFT))
def spectral_centroid(fft_magnitude, sampling_rate=40):
ind = (np.arange(1, len(fft_magnitude) + 1)) * (sampling_rate / (2.0 * len(fft_magnitude)))
Xt = fft_magnitude.copy()
Xt = Xt / Xt.max()
NUM = np.sum(ind * Xt)
DEN = np.sum(Xt) + eps
# Centroid:
centroid = (NUM / DEN)
# Normalize:
centroid = centroid / (sampling_rate / 2.0)
return centroid
# Computes spectral centroid of frame (given abs(FFT))
def spectral_spread(fft_magnitude, sampling_rate=40):
ind = (np.arange(1, len(fft_magnitude) + 1)) * (sampling_rate / (2.0 * len(fft_magnitude)))
Xt = fft_magnitude.copy()
Xt = Xt / Xt.max()
NUM = np.sum(ind * Xt)
DEN = np.sum(Xt) + eps
# Spread:
spread = np.sqrt(np.sum(((ind - (NUM / DEN)) ** 2) * Xt) / DEN)
# Normalize:
spread = spread / (sampling_rate / 2.0)
return spread
# Computes the spectral flux feature of the current frame
def spectral_flux(fft_magnitude, previous_fft_magnitude):
# compute the spectral flux as the sum of square distances:
fft_sum = np.sum(fft_magnitude + eps)
previous_fft_sum = np.sum(previous_fft_magnitude + eps)
sp_flux = np.sum((fft_magnitude / fft_sum - previous_fft_magnitude / previous_fft_sum) ** 2)
return sp_flux
# Computes spectral roll-off
def spectral_rolloff(signal, c=0.90):
energy = np.sum(signal ** 2)
fft_length = len(signal)
threshold = c * energy
# Find the spectral rolloff as the frequency position where the respective spectral energy is equal to c*totalEnergy
cumulative_sum = np.cumsum(signal ** 2) + eps
a = np.nonzero(cumulative_sum > threshold)[0]
sp_rolloff = 0.0
if len(a) > 0: sp_rolloff = np.float64(a[0]) / (float(fft_length))
return sp_rolloff
def skewness(signal):
return skew(signal)
def avg_power(signal):
_, power = welch(signal, 40)
return np.mean(power)
def rms(signal):
return np.sqrt(np.mean(signal ** 2))