-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexport_render.py
130 lines (102 loc) · 3.57 KB
/
export_render.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import utils
from logger import Logger
from checkpoints import CheckpointIO
from checkpoints import sorted_ckpts
from dataio.dataset import NeRFMMDataset
from models.frameworks import create_model
from models.volume_rendering import volume_render
from models.cam_params import CamParams, get_rays
import os
import functools
import torch
import imageio
def update_mask(
args,
views_id,
kwargs_train, kwargs_test,
cam_param, dataset,
device,
logger
):
rgbs = []
with torch.no_grad():
to_img = functools.partial(utils.lin2img,H=dataset.H,W=dataset.W, batched=kwargs_test['batched'])
for view_id_np in views_id:
view_id,img = dataset[view_id_np]
view_id = view_id.squeeze(-1)
R, t, fx, fy, cx, cy = cam_param(view_id)
# [N_rays, 3], [N_rays, 3], [N_rays]
rays_o, rays_d, _ = get_rays(
cam_param,
R, t,
fx, fy,
cx, cy,
cam_param.W0, cam_param.H0,
-1,
-1,
representation=args.model.so3_representation)
# [N_rays, 3]
rgb = img.to(device)
val_rgb, val_depth, val_extras = volume_render(
rays_o=rays_o,
rays_d=rays_d,
detailed_output=True,
**kwargs_test)
logger.add_single_img(to_img( val_rgb ), 'render_'+str(view_id_np))
val_rgb = val_rgb.view(dataset.H,dataset.W,3)
val_rgb = val_rgb.cpu().numpy()
rgbs.append(val_rgb)
imageio.mimwrite('interpolate_rgb.mp4', rgbs, fps=2, quality=8)
def main_function(args):
device_ids = args.device_ids
device = "cuda:{}".format(device_ids[0])
exp_dir = args.training.exp_dir
print("=> Experiments dir: {}".format(exp_dir))
# logger
logger = Logger(
log_dir=exp_dir,
img_dir=os.path.join(exp_dir, 'imgs'),
monitoring='tensorboard',
monitoring_dir=os.path.join(exp_dir, 'events'))
# datasets: just pure images.
dataset = NeRFMMDataset(
args.data.data_dir,
args.data.data_name,
args.data.pyramid_level)
imgs_id = dataset.keyframes_id
# Camera parameters to optimize
cam_param = CamParams.from_config(
num_imgs=len(dataset),
H0=dataset.H, W0=dataset.W,
so3_repr=args.model.so3_representation,
intr_repr=args.model.intrinsics_representation,
initial_fov=args.model.initial_fov)
cam_param.to(device)
cam_param.H0 = dataset.H
cam_param.W0 = dataset.W
# Create nerf model
model, kwargs_train, kwargs_test, grads = create_model(
args, model_type=args.model.framework)
model.to(device)
print(args.training.ckpt_file)
if args.training.ckpt_file is None or args.training.ckpt_file == 'None':
# automatically load 'final_xxx.pt' or 'latest.pt'
ckpt_file = sorted_ckpts(os.path.join(exp_dir, 'ckpts'))[-1]
else:
ckpt_file = args.training.ckpt_file
print("=> Loading ckpt file: {}".format(ckpt_file))
state_dict = torch.load(ckpt_file, map_location=device)
model_dict = state_dict['model']
model.load_state_dict(model_dict)
cam_dict = state_dict['cam_param']
cam_param.load_state_dict(cam_dict)
update_mask(
args,
imgs_id,
kwargs_train, kwargs_test,
cam_param, dataset,
device,
logger)
if __name__ == "__main__":
config = utils.merge_config()
main_function(config)