-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_torch.py
225 lines (200 loc) · 8.9 KB
/
train_torch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
from tensorflow.python.keras.applications import imagenet_utils
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import numpy as np
from torchvision import datasets,models,transforms
import os
import matplotlib.pyplot as plt
import pandas as pd
from PIL import Image
from torch.utils.data import Dataset
import cv2
import argparse
import random
from collections.abc import Iterable
from sklearn.utils import shuffle
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', type=str,
default='datasets/data', help='Raf-DB dataset path.')
parser.add_argument('--checkpoint', type=str, default=None,
help='Pytorch checkpoint file path')
parser.add_argument('--pretrained', type=str, default=None,
help='Pretrained weights')
parser.add_argument('--beta', type=float, default=0.7,
help='Ratio of high importance group in one mini-batch.')
parser.add_argument('--relabel_epoch', type=int, default=10,
help='Relabeling samples on each mini-batch after 10(Default) epochs.')
parser.add_argument('--margin_1', type=float, default=0.07,
help='Rank regularization margin. Details described in the paper.0.15-->1024bs')
parser.add_argument('--margin_2', type=float, default=0.2,
help='Relabeling margin. Details described in the paper.')
parser.add_argument('--batch_size', type=int,
default=64, help='Batch size.')
parser.add_argument('--optimizer', type=str,
default="adam", help='Optimizer, adam or sgd.')
parser.add_argument('--lr', type=float, default=0.01,
help='Initial learning rate for sgd.')
parser.add_argument('--momentum', default=0.9,
type=float, help='Momentum for sgd')
parser.add_argument('--workers', default=4, type=int,
help='Number of data loading workers (default: 4)')
parser.add_argument('--epochs', type=int, default=70,
help='Total training epochs.')
parser.add_argument('--drop_rate', type=float,
default=0, help='Drop out rate.')
return parser.parse_args()
device =torch.device("cuda" if torch.cuda.is_available() else "cpu")
#todo 读取数据
class MyDataSet(Dataset):
def __init__(self,data_path,phase='train',transform = None,basic_aug=False):
self.phase = phase
self.transform = transform
self.data_path = data_path
NAME_COLUMN = 0
LABEL_COLUMN = 1
dataset = pd.read_csv(os.path.join(self.data_path, 'trainlabel.txt'), sep=' ', header=None) # 标签数据
dataset = shuffle(dataset) # 打乱顺序
if phase == 'train':
file_names = dataset.iloc[:8000, NAME_COLUMN].values
# 0:正常 1:颠倒
self.label = dataset.iloc[:8000, LABEL_COLUMN].values
else:
file_names = dataset.iloc[8000:, NAME_COLUMN].values
# 0:正常 1:颠倒
self.label = dataset.iloc[8000:, LABEL_COLUMN].values
self.file_paths = []
for f in file_names:
path = os.path.join(self.data_path, f)
self.file_paths.append(path)
self.basic_aug=basic_aug
self.aug_func=[imagenet_utils.flip_image,imagenet_utils.add_gaussion_noise]
def __len__(self):
# 图片数量
return len(self.file_paths)
def __getitem__(self, idx):
path = self.file_paths[idx] # 第几张图片
image = cv2.imread(path)
image = image[:, :, ::-1] # BGR to RGB
label = int(self.label[idx])
# augmentation
if self.phase == 'train':
if self.basic_aug and random.uniform(0, 1) > 0.5:
index = random.randint(0, 1)
image = self.aug_func[index](image) # 随机进行flip水平翻转图片0, 随机抖动1
if self.transform is not None:
image = self.transform(image)
return image, label, idx
class MobileNetV2Feature(nn.Module):
def __init__(self, num_classes=2,drop_rate=0):
super(MobileNetV2Feature,self).__init__()
self.drop_rate = drop_rate
net = models.mobilenet_v2(True,width_mult=0.25)
net.classifier=nn.Sequential() # 将分类层置空
self.features=net # 保留特征层
self.classifier = nn.Sequential(
nn.Linear(1280,1000),
nn.ReLU(True),
nn.Dropout(drop_rate),
nn.Linear(1000,num_classes),
)
def forward(self,x):
x = self.features(x)
x = x.view(x.size(0),-1) # 展平
x = self.classifier(x)
return x
# 定义两个函数,一个可以冻住features层,只训练FC层,另一个把features层解冻,训练所有参数
def set_freeze_by_names(model, layer_names, freeze=True):
if not isinstance(layer_names, Iterable):
layer_names = [layer_names]
for name, child in model.named_children():
if name not in layer_names:
continue
for param in child.parameters():
param.requires_grad = not freeze
def freeze_by_names(model, layer_names):
set_freeze_by_names(model, layer_names, True)
def unfreeze_by_names(model, layer_names):
set_freeze_by_names(model, layer_names, False)
def run_training():
args = parse_args()
net = MobileNetV2Feature(drop_rate=args.drop_rate)
data_transforms = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5]),
transforms.RandomErasing(scale=(0.02, 0.25))])
train_dataset = MyDataSet(
args.raf_path, phase='train', transform=data_transforms, basic_aug=True)
print('Train set size:', train_dataset.__len__())
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=args.batch_size,
num_workers=args.workers,
shuffle=True,
pin_memory=True)
data_transforms_val = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])])
val_dataset = MyDataSet(args.raf_path, phase='test',
transform=data_transforms_val)
print('Validation set size:', val_dataset.__len__())
val_loader = torch.utils.data.DataLoader(val_dataset,
batch_size=args.batch_size,
num_workers=args.workers,
shuffle=False,
pin_memory=True)
params = net.parameters()
if args.optimizer == 'adam':
optimizer = torch.optim.Adam(params, weight_decay=1e-4)
elif args.optimizer == 'sgd':
optimizer = torch.optim.SGD(params, args.lr,
momentum=args.momentum,
weight_decay=1e-4)
else:
raise ValueError("Optimizer not supported.")
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)
net = net.to(device)
# 冻结 features层
freeze_by_names(net, ('features'))
# 解冻features层
# unfreeze_by_names(net, ('features'))
criterion = nn.CrossEntropyLoss()
margin_1 = args.margin_1
margin_2 = args.margin_2
beta = args.beta
modelSaved = False # 模型是否保存过
for i in range(1, args.epochs + 1):
running_loss = 0.0
correct_sum = 0
iter_cnt = 0
net.train()
for batch_i, (imgs, targets, indexes) in enumerate(train_loader):
batch_sz = imgs.size(0)
iter_cnt += 1
tops = int(batch_sz * beta)
optimizer.zero_grad()
imgs = imgs.to(device)
outputs = net(imgs)
targets = np.array(targets)
targets = torch.from_numpy(targets)
targets = targets.to(device)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
running_loss += loss.item()
# 使用Top5分类
maxk = max((1,5))
label_resize = targets.view(-1, 1)
_, predicted = outputs.topk(maxk, 1, True, True)
total += targets.size(0)
correct += torch.eq(predicted, label_resize).cpu().sum().float().item()
print('[epoch:%d, iter:%d] Loss: %.03f | Acc: %.3f%% '
% (epoch + 1, (i + 1 + epoch * length), sum_loss / (i + 1), 100. * correct / total))