|
| 1 | +#================================================================================================================# |
| 2 | +# Training and Validation |
| 3 | +#================================================================================================================# |
| 4 | + |
| 5 | +# Libraries needed: |
| 6 | + |
| 7 | +# - numpy (array) |
| 8 | +# - matplotlib (plotting) |
| 9 | +# - keras (deep learning) - image, convolution, maxpool, flatten, dense, models |
| 10 | +# - os (directory reading) |
| 11 | + |
| 12 | +# `image` = read images |
| 13 | +# `model` = compile everything as a model so next time can use |
| 14 | +# `flow_from_directory` = read image >> convert to array >> concatenate all images into big array |
| 15 | + |
| 16 | +#----------------------------------------------------------------------------------------------------------------# |
| 17 | + |
| 18 | +import numpy as np |
| 19 | +from matplotlib import pyplot as plt |
| 20 | +import os |
| 21 | +from keras.preprocessing import image |
| 22 | +from keras.layers import Conv2D, MaxPool2D, Flatten, Dense |
| 23 | +from keras.models import Model |
| 24 | +from keras.layers import Input # function of determining the input size in the first layer |
| 25 | + |
| 26 | +directory = '../input/mnistasjpg/trainingSet/trainingSet/' |
| 27 | + |
| 28 | +# image reader |
| 29 | +datagen = image.ImageDataGenerator(rescale = 1./255, validation_split = 0.2) |
| 30 | +train_set = datagen.flow_from_directory(directory, target_size = (100, 100), batch_size = 16, |
| 31 | + class_mode = 'categorical', subset = 'training') |
| 32 | +val_set = datagen.flow_from_directory(directory, target_size = (100, 100), batch_size = 16, |
| 33 | + class_mode = 'categorical', subset = 'validation') |
| 34 | + |
| 35 | +#----------------------------------------------------------------------------------------------------------------# |
| 36 | + |
| 37 | +def network(nb_class, inputsize): # nb_class = 10, input = (100, 100, 3) |
| 38 | + input_img = Input(shape = inputsize) |
| 39 | + x = Conv2D(16, (3,3), strides = (1,1), activation = 'relu', padding = 'same', name = 'gkm_conv1')(input_img) |
| 40 | + # 1st - number of filters, 2nd - filter size |
| 41 | + x = MaxPool2D((3,3), strides = (2,2), padding = 'same', name = 'gkm_maxpool1')(x) |
| 42 | + x = Conv2D(32, (3,3), strides = (1,1), activation = 'relu', padding = 'same', name = 'gkm_conv2')(x) |
| 43 | + x = MaxPool2D((3,3), strides = (2,2), padding = 'same', name = 'gkm_maxpool2')(x) |
| 44 | + x = Flatten(name = 'flatten')(x) |
| 45 | + x = Dense(100, activation = 'relu')(x) |
| 46 | + x = Dense(nb_class, activation = 'softmax')(x) |
| 47 | + model = Model(input_img, x) |
| 48 | + return model |
| 49 | + |
| 50 | +model = network(nb_class = 10, inputsize = (100,100,3)) |
| 51 | +model.compile(loss = 'categorical_crossentropy', optimizer = 'adam', metrics = ['accuracy']) |
| 52 | +model.summary() |
| 53 | + |
| 54 | +# Save the model |
| 55 | +model.save('SimpleDL.h5') |
| 56 | + |
| 57 | +#----------------------------------------------------------------------------------------------------------------# |
| 58 | + |
| 59 | +# training and validation |
| 60 | +hist = model.fit(train_set, epochs = 20, steps_per_epoch = 25, validation_data = val_set, verbose = 1) |
| 61 | + |
| 62 | +# plot training loss and validation loss |
| 63 | +plt.plot(hist.history['loss']) |
| 64 | +plt.plot(hist.history['val_loss']) |
| 65 | +plt.legend(['training loss', 'validation loss'], loc = 'upper right') |
| 66 | + |
| 67 | +# plot training accuracy and validation accuracy |
| 68 | +plt.plot(hist.history['accuracy']) |
| 69 | +plt.plot(hist.history['val_accuracy']) |
| 70 | +plt.legend(['accuracy', 'validation accuracy'], loc = 'lower right') |
| 71 | + |
| 72 | + |
| 73 | +#================================================================================================================# |
| 74 | +# Testing |
| 75 | +#================================================================================================================# |
| 76 | + |
| 77 | +import cv2 # open cv (read images) |
| 78 | + |
| 79 | +# read the picture to be tested |
| 80 | +direct = '../input/mnistasjpg/testSet/testSet/img_10.jpg' |
| 81 | +img = cv2.imread(direct) |
| 82 | +img = cv2.resize(img, (100, 100)) |
| 83 | +data = np.array(img)/255 |
| 84 | + |
| 85 | +# DL trains in 4 dimensions, so data reshaping is needed |
| 86 | +data = data.reshape(1, 100, 100, 3) |
| 87 | +data.shape |
| 88 | + |
| 89 | +# Get the probability that this image is belong to each class |
| 90 | +result = model.predict(data) |
| 91 | +result.sum() # this is equal to 1 |
| 92 | + |
| 93 | +# take the largest probability among 'result' |
| 94 | +output = np.argmax(result) |
| 95 | +print(output) |
| 96 | + |
| 97 | + |
| 98 | + |
| 99 | + |
0 commit comments