-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprocess_data.py
249 lines (208 loc) · 7.93 KB
/
process_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import numpy as np
import _pickle as cPickle
from collections import defaultdict
import sys, re
import pandas as pd
def build_data_cv(data_file, cv=10, clean_string=True):
"""
Loads data and split into 10 folds.
"""
revs = []
y_data = []
vocab = defaultdict(float)
with open(data_file, "r",encoding='latin1') as f:
for line in f:
rev = []
rev.append(line[2:].strip())
if clean_string:
orig_rev = clean_str(" ".join(rev))
else:
orig_rev = " ".join(rev).lower()
words = set(orig_rev.split())
for word in words:
vocab[word] += 1
y_data.append(int(line[0]))
datum = {"y":int(line[0]),
"text": orig_rev,
"num_words": len(orig_rev.split()),
"split": np.random.randint(0,cv)}
revs.append(datum)
num_classes = len(set(y_data))
return revs, vocab, num_classes
def build_data_split(data_folder, clean_string=True):
"""
Loads data for pre-split datasets.
"""
train_file = data_folder[0]
test_file = data_folder[1]
dev_file = data_folder[2]
train_revs = []
test_revs = []
dev_revs = []
y_data = []
vocab = defaultdict(float)
with open(train_file, "r", encoding='latin1') as f:
for line in f:
rev = []
rev.append(line[2:].strip())
if clean_string:
if "stsa" in train_file:
orig_rev = clean_str_sst(" ".join(rev))
elif "TREC" in train_file:
orig_rev = clean_str(" ".join(rev),True)
else:
orig_rev = clean_str(" ".join(rev))
else:
orig_rev = " ".join(rev).lower()
words = set(orig_rev.split())
for word in words:
vocab[word] += 1
y_data.append(int(line[0]))
datum = {"y":int(line[0]),
"text": orig_rev,
"num_words": len(orig_rev.split())}
train_revs.append(datum)
if "TREC" not in dev_file:
with open(dev_file, "r", encoding='latin1') as f:
for line in f:
rev = []
rev.append(line[2:].strip())
if clean_string:
if "stsa" in dev_file:
orig_rev = clean_str_sst(" ".join(rev))
else:
orig_rev = clean_str(" ".join(rev))
else:
orig_rev = " ".join(rev).lower()
words = set(orig_rev.split())
for word in words:
vocab[word] += 1
y_data.append(int(line[0]))
datum = {"y":int(line[0]),
"text": orig_rev,
"num_words": len(orig_rev.split())}
dev_revs.append(datum)
with open(test_file, "r", encoding='latin1') as f:
for line in f:
rev = []
rev.append(line[2:].strip())
if clean_string:
if "stsa" in test_file:
orig_rev = clean_str_sst(" ".join(rev))
elif "TREC" in test_file:
orig_rev = clean_str(" ".join(rev),True)
else:
orig_rev = clean_str(" ".join(rev))
else:
orig_rev = " ".join(rev).lower()
y_data.append(int(line[0]))
datum = {"y":int(line[0]),
"text": orig_rev,
"num_words": len(orig_rev.split())}
test_revs.append(datum)
num_classes = len(set(y_data))
if len(dev_revs)>0:
return train_revs, test_revs, dev_revs, vocab, num_classes
return train_revs, test_revs, vocab, num_classes
def get_W(word_vecs, k=300):
"""
Get word matrix. W[i] is the vector for word indexed by i
"""
vocab_size = len(word_vecs)
word_idx_map = dict()
W = np.zeros(shape=(vocab_size+1, k), dtype='float32')
W[0] = np.zeros(k, dtype='float32')
i = 1
for word in word_vecs:
W[i] = word_vecs[word]
word_idx_map[word] = i
i += 1
return W, word_idx_map
def load_bin_vec(fname, vocab):
"""
Loads 300x1 word vecs from Google (Mikolov) word2vec
"""
word_vecs = {}
from gensim.models import KeyedVectors
model = KeyedVectors.load_word2vec_format(fname, binary=True) # C binary format
for word in vocab:
if word in model.wv.vocab:
word_vecs[word]=model[word]
del model
return word_vecs
def add_unknown_words(word_vecs, vocab, min_df=1, k=300):
"""
For words that occur in at least min_df documents, create a separate word vector.
0.25 is chosen so the unknown vectors have (approximately) same variance as pre-trained ones
"""
for word in vocab:
if word not in word_vecs and vocab[word] >= min_df:
word_vecs[word] = np.random.uniform(-0.25,0.25,k)
def clean_str(string, TREC=False):
"""
Tokenization/string cleaning for all datasets except for SST.
Every dataset is lower cased except for TREC
"""
string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string)
string = re.sub(r"\'s", " \'s", string)
string = re.sub(r"\'ve", " \'ve", string)
string = re.sub(r"n\'t", " n\'t", string)
string = re.sub(r"\'re", " \'re", string)
string = re.sub(r"\'d", " \'d", string)
string = re.sub(r"\'ll", " \'ll", string)
string = re.sub(r",", " , ", string)
string = re.sub(r"!", " ! ", string)
string = re.sub(r"\(", " \( ", string)
string = re.sub(r"\)", " \) ", string)
string = re.sub(r"\?", " \? ", string)
string = re.sub(r"\s{2,}", " ", string)
return string.strip() if TREC else string.strip().lower()
def clean_str_sst(string):
"""
Tokenization/string cleaning for the SST dataset
"""
string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string)
string = re.sub(r"\s{2,}", " ", string)
return string.strip().lower()
if __name__=="__main__":
# dataset = "../data/rt-polarity.all"
#dataset = "../data/custrev.all"
#dataset = "../data/mpqa.all"
#dataset = "../data/subj.all"
# dataset = "../data/stsa.binary"
# dataset = "../data/stsa.fine"
dataset = "../data/TREC"
dataset_split = "split"
w2v_file = "../GoogleNews-vectors-negative300.bin"
print("loading data...")
if dataset_split=="cv":
revs, vocab, num_classes = build_data_cv(dataset, cv=10, clean_string=True)
max_l = np.max(pd.DataFrame(revs)["num_words"])
print("number of sentences: " + str(len(revs)))
else:
data_folder = [dataset+".train",dataset+".test",dataset+".dev"]
if 'TREC' in dataset:
train_revs, test_revs, vocab, num_classes = build_data_split(data_folder, clean_string=True)
else:
train_revs, test_revs, dev_revs, vocab, num_classes = build_data_split(data_folder, clean_string=True)
max_l = np.max(pd.DataFrame(train_revs)["num_words"])
print("data loaded!")
print("vocab size: " + str(len(vocab)))
print("max sentence length: " + str(max_l))
print("loading word2vec vectors...")
w2v = load_bin_vec(w2v_file, vocab)
print("word2vec loaded!")
print("num words already in word2vec: " + str(len(w2v)))
add_unknown_words(w2v, vocab)
W, word_idx_map = get_W(w2v)
rand_vecs = {}
add_unknown_words(rand_vecs, vocab)
W2, _ = get_W(rand_vecs)
if dataset_split=="cv":
cPickle.dump([revs, W, W2, word_idx_map, vocab, max_l, num_classes], open("mr.p", "wb"))
else:
if 'TREC' in dataset:
cPickle.dump([train_revs, test_revs, W, W2, word_idx_map, vocab, max_l, num_classes], open("mr_split.p", "wb"))
else:
cPickle.dump([train_revs, dev_revs, test_revs, W, W2, word_idx_map, vocab, max_l, num_classes], open("mr_split.p", "wb"))
print("dataset created!")