-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtrain.py
295 lines (260 loc) · 12 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import torch
import os
import json
import imageio
import numpy as np
from lib.nerf import get_rays_of_a_view
from lib import PACNeRF, FullBatchLBFGS
import mmcv
import cv2
from tqdm import tqdm
from matting import MattingRefine
import time
time0 = time.time()
device = torch.device("cuda:0")
torch.manual_seed(123)
np.random.seed(123)
def load_data(data_folder, num_views, H, W):
try:
checkpoint = torch.load(os.path.join(data_folder, "data.pt"))
rays_o_all = checkpoint['rays_o']
rays_d_all = checkpoint['rays_d']
viewdirs_all = checkpoint['viewdirs']
rgb_all = checkpoint['rgb_all']
if 'ray_mask_all' in checkpoint:
ray_mask_all = checkpoint['ray_mask_all']
else:
ray_mask_all = torch.ones([rgb_all.shape[0], rgb_all.shape[2]])
except:
matting_model = MattingRefine(backbone='resnet101',
backbone_scale=1/2,
refine_mode = 'sampling',
refine_sample_pixels = 100_000)
matting_model.load_state_dict(torch.load('checkpoint/pytorch_resnet101.pth', map_location=device))
matting_model = matting_model.eval().to(torch.float32).to(device)
with open(os.path.join(data_folder, "all_data.json")) as f:
data_info = json.load(f)
n_frames = int(len(data_info) / num_views) - 1
c2w_all = torch.zeros(num_views, 3, 4)
K_all = torch.zeros(num_views, 3, 3)
rgb_all = torch.zeros(num_views, n_frames, H, W, 3)
rays_o_all, rays_d_all, viewdirs_all = torch.zeros(num_views, H, W, 3), torch.zeros(num_views, H, W, 3), torch.zeros(num_views, H, W, 3)
ray_mask_all = torch.ones(num_views, H, W)
backgroud_all = np.zeros([num_views, H, W, 3])
for entry in data_info:
cam_id, frame_id = [int(i) for i in entry["file_path"].split("/")[-1].rstrip(".png").lstrip("r_").split("_")]
if frame_id == -1:
backgroud_all[cam_id] = np.array(imageio.imread(os.path.join(data_folder, entry["file_path"])))[..., :3]
if frame_id == -2:
alpha = imageio.imread(os.path.join(data_folder, entry["file_path"]))[..., 3]
ray_mask_all[cam_id][alpha > 50] = 0
print("Removing image backgrounds.....")
for entry in tqdm(data_info):
cam_id, frame_id = [int(i) for i in entry["file_path"].split("/")[-1].rstrip(".png").lstrip("r_").split("_")]
if frame_id < 0:
continue
c2w_all[cam_id] = torch.tensor(entry["c2w"])
K_all[cam_id] = torch.tensor(entry["intrinsic"])
img = np.array(imageio.imread(os.path.join(data_folder, entry["file_path"])))[..., :3]
bgr = backgroud_all[cam_id]
with torch.no_grad():
img_tensor = torch.from_numpy(img.transpose(2, 0, 1).astype(np.float32) / 255).to(device)[None]
bgr_tensor = torch.from_numpy(bgr.transpose(2, 0, 1).astype(np.float32) / 255).to(device)[None]
pha = matting_model(img_tensor, bgr_tensor)[0][0,0].cpu().numpy()
mask = pha < 0.9
img[mask] = 255
cv2.imwrite(os.path.join(data_folder, f"data/m_{cam_id}_{frame_id}.png"), img[...,::-1])
rgb_all[cam_id, frame_id] = torch.from_numpy(img.astype(np.float32) / 255.)
print("Generating rays.....")
for i in tqdm(range(num_views)):
rays_o, rays_d, viewdirs = get_rays_of_a_view(H, W, K_all[i], c2w_all[i])
rays_o_all[i] = rays_o
rays_d_all[i] = rays_d
viewdirs_all[i] = viewdirs
rays_o_all = rays_o_all.reshape([num_views, -1, 3])
rays_d_all = rays_d_all.reshape([num_views, -1, 3])
viewdirs_all = viewdirs_all.reshape([num_views, -1, 3])
rgb_all = rgb_all.reshape([num_views, n_frames, -1, 3])
ray_mask_all = ray_mask_all.reshape([num_views, -1])
print("Caching dataset.....")
torch.save({
'rays_o': rays_o_all,
'rays_d': rays_d_all,
'viewdirs': viewdirs_all,
'rgb_all': rgb_all,
'ray_mask_all': ray_mask_all
}, os.path.join(data_folder, "data.pt"))
return rays_o_all, rays_d_all, viewdirs_all, rgb_all, ray_mask_all
def reset_optimizer(stage, pnerf):
if stage == "static":
optimizer = torch.optim.Adam(
[
{'params': pnerf.nerf.density.parameters(), 'lr': 1e-1},
{'params': pnerf.nerf.k0.parameters(), 'lr': 1e-1},
{'params': pnerf.nerf.rgbnet.parameters(), 'lr': 1e-3}],
)
elif stage == 'velocity':
optimizer = FullBatchLBFGS(
params=[pnerf.global_v],
lr=1,
history_size=20,
debug=True,
line_search='Wolfe'
)
elif stage == 'dynamic':
optimizer = torch.optim.Adam(
[
*[{'params': getattr(pnerf, k), 'lr': cfg['physical_params'][k]}
for k in cfg['physical_params']],
],
amsgrad=False
)
else:
optimizer=None
return optimizer
def create_model_and_optimizer(cfg, stage, pnerf=None):
base_dir=cfg['base_dir']
try:
checkpoint = torch.load(os.path.join(base_dir, f"model/train_{stage}.pt"))
saved_cfg = checkpoint['cfg']
cfg.update(saved_cfg)
start = checkpoint['epoch']
print(f"======= {stage} Train from epoch {start} =======")
except:
start = 0
os.makedirs(base_dir, exist_ok=True)
os.makedirs(os.path.join(base_dir, "image"), exist_ok=True)
os.makedirs(os.path.join(base_dir, "model"), exist_ok=True)
checkpoint = None
print(f"======= {stage} Train from Scratch =======")
if pnerf == None:
pnerf = PACNeRF(**cfg)
pnerf.to(device)
if checkpoint:
pnerf.load_state_dict(checkpoint['model_state_dict'], strict=False)
optimizer = reset_optimizer(stage, pnerf)
try:
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
except:
pass
return pnerf, optimizer, start
def train_static(cfg, pnerf, optimizer, start, max_iter, rays_o_all, rays_d_all, viewdirs_all, rgb_all, ray_mask_all):
pbar = tqdm(range(start, max_iter))
for i in pbar:
optimizer.zero_grad()
global_loss = pnerf.forward(1, rays_o_all,
rays_d_all,
viewdirs_all,
rgb_all,
rays_mask=ray_mask_all,
H=cfg["H"], W=cfg["W"], bg=1, saving_freq=100,
partial=True, full_batch=False)
pnerf.backward(1)
optimizer.step()
pbar.set_description(f"[Training static], loss={global_loss}")
if i in cfg['pg_scale']:
pnerf.nerf.scale_volume_grid()
optimizer = reset_optimizer("static", pnerf)
if i % 1000 == 0 and i > 0:
pnerf.entropy_weight *= 2
pnerf.entropy_weight = min(0.1, pnerf.entropy_weight)
if i % 100 == 0:
torch.save({
'epoch': i+1,
'model_state_dict': pnerf.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'cfg': pnerf.get_kwargs()
}, os.path.join(cfg["base_dir"], "model/train_static.pt"))
def train_velocity(cfg, pnerf, start, rays_o_all, rays_d_all, viewdirs_all, rgb_all, ray_mask_all, point_gt=None):
pnerf.dynamic_observer.particle.deactivate_all()
def evaluate(max_f, optimizer, full_batch):
optimizer.zero_grad()
dt = cfg['dt']
loss = torch.tensor(np.nan, device=device)
while loss.isnan():
pnerf.dynamic_observer.simulator.set_dt(dt)
loss = pnerf.forward(max_f, rays_o_all,
rays_d_all,
viewdirs_all,
rgb_all,
ray_mask_all,
H=cfg["H"], W=cfg["W"], bg=1, saving_freq=10, partial=False, full_batch=full_batch, point_gt=point_gt)
dt /= 2
time_elapsed = time.time() - time0
print(f"Time elaspsed: {time_elapsed}")
return loss
if start <= cfg['hit_frame']:
start = cfg['hit_frame']
optimizer = reset_optimizer('velocity', pnerf)
obj = evaluate(cfg['hit_frame'], optimizer, True)
pnerf.backward(cfg['hit_frame'])
for _ in range(100):
options = {"closure": lambda: evaluate(cfg['hit_frame'], optimizer, True), 'current_loss': obj, "c1":1e-6, "c2": 0.99, "max_ls": 20, "ls_debug":True, "interpolate": False}
obj, grad, lr, d, _, _, _, _, _ = optimizer.step(lambda: pnerf.backward(cfg['hit_frame']), options)
change = lr * d.abs().max()
grad_norm = grad.abs().max().item()
print(f"===== loss: {obj.item()}; param change: {change}; grad_norm: {grad_norm} =====")
if change < 1e-3:
break
torch.save({
'epoch': start+1,
'model_state_dict': pnerf.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'cfg': pnerf.get_kwargs()
}, os.path.join(cfg['base_dir'], "model/train_velocity.pt"))
start = cfg['hit_frame'] + 1
def train_dynamic(cfg, pnerf, optimizer, start, rays_o_all, rays_d_all, viewdirs_all, rgb_all, ray_mask_all, point_gt=None):
pnerf.dynamic_observer.particle.deactivate_all()
def evaluate(max_f, optimizer, full_batch):
optimizer.zero_grad()
loss = torch.tensor(np.nan, device=device)
dt = cfg['dt']
while loss.isnan():
pnerf.dynamic_observer.simulator.set_dt(dt)
if point_gt is not None:
loss = pnerf.geoloss_forward(max_f, point_gt)
else:
loss = pnerf.forward(max_f, rays_o_all,
rays_d_all,
viewdirs_all,
rgb_all,
ray_mask_all,
H=cfg["H"], W=cfg["W"], bg=1, saving_freq=10, partial=False, full_batch=full_batch, point_gt=point_gt)
dt /= 2
time_elapsed = time.time() - time0
print(f"Time elaspsed: {time_elapsed}")
return loss
optimizer = reset_optimizer('dynamic', pnerf)
for stage, frame_iter in enumerate(zip([cfg["hit_frame"] + cfg["warmup_step"], rgb_all.shape[1]], [50, 100])):
if stage >= start:
max_f, iter = frame_iter
for i in range(iter):
obj = evaluate(max_f, optimizer, False)
pnerf.backward(max_f)
optimizer.step()
torch.save({
'epoch': stage + 1,
'model_state_dict': pnerf.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'cfg': pnerf.get_kwargs()
}, os.path.join(cfg['base_dir'], "model/train_dynamic.pt"))
import argparse
def config_parser():
'''Define command line arguments
'''
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--config', required=True,
help='config file path')
return parser
if __name__=='__main__':
parser = config_parser()
args = parser.parse_args()
cfg = mmcv.Config.fromfile(args.config)['cfg']
rays_o_all, rays_d_all, viewdirs_all, rgb_all, ray_mask_all = load_data(cfg['data_dir'], cfg['n_cameras'], H=cfg['H'], W=cfg['W'])
pnerf, optimizer, start = create_model_and_optimizer(cfg, 'static', pnerf=None)
train_static(cfg, pnerf, optimizer, start, cfg['N_static'], rays_o_all, rays_d_all, viewdirs_all, rgb_all, ray_mask_all)
rgb_all = rgb_all[:, :cfg['n_frames'] , ...]
pnerf, optimizer, start = create_model_and_optimizer(cfg, 'velocity', pnerf=pnerf)
train_velocity(cfg, pnerf, start, rays_o_all, rays_d_all, viewdirs_all, rgb_all, ray_mask_all)
pnerf, optimizer, start = create_model_and_optimizer(cfg, 'dynamic', pnerf=pnerf)
train_dynamic(cfg, pnerf, optimizer, start, rays_o_all, rays_d_all, viewdirs_all, rgb_all, ray_mask_all)