forked from abghorba/Robinhood-Trading-Bot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrade_bot.py
579 lines (456 loc) · 17.5 KB
/
trade_bot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
from config import TWITTER_CONSUMER_KEY, TWITTER_CONSUMER_SECRET
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
import pandas as pd
import robin_stocks.robinhood as robinhood
import tweepy
class TradeBot:
def __init__(self, username, password):
"""Logs user into their Robinhood account."""
robinhood.login(username, password)
def robinhood_logout(self):
"""Logs user out of their Robinhood account."""
return robinhood.logout()
def has_sufficient_funds_available(self, amount_in_dollars):
"""Returns a boolean if user's account has enough buying
power to execute a buy order.
Parameters
----------
amount_in_dollars : float
The amount in USD to be used for a transaction.
Returns
-------
bool
True if there are sufficient funds in user's account.
"""
if not amount_in_dollars:
return False
# Retrieve the available funds.
available_funds = float(
robinhood.profiles.load_account_profile(info="buying_power")
)
return available_funds >= amount_in_dollars
def has_sufficient_equity(self, ticker, amount_in_dollars):
"""Returns a boolean if user's account has enough equity in
the given position to execute a sell order.
Parameters
----------
ticker : str
A company's ticker symbol.
amount_in_dollars : float
The amount in USD to be used for a transaction.
Returns
-------
bool
True if there is sufficient equity in the user's holding.
"""
if not amount_in_dollars or amount_in_dollars <= 0:
return False
portfolio = robinhood.account.build_holdings()
if ticker in portfolio:
position = portfolio[ticker]
equity_in_position = float(position["equity"])
return equity_in_position >= amount_in_dollars
return False
def place_buy_order(self, ticker, amount_in_dollars):
"""Places a buy order for ticker with a specified amount.
Parameters
----------
ticker : str
A company's ticker symbol.
amount_in_dollars : float
The amount in USD to be used for the purchase.
Returns
-------
purchase_data : dict
Dictionary that contains information regarding the
purchase of stocks, such as the order id, the state
of order (queued, confired, filled, failed, canceled,
etc.), the price, and the quantity.
"""
purchase_data = {}
if not ticker or not amount_in_dollars:
print("ERROR: Parameters cannot have null values.")
return purchase_data
if amount_in_dollars < 1:
print("ERROR: A purchase cannot be made with less than $1.00 USD.")
return purchase_data
# Must have enough funds for the purchase
if self.has_sufficient_funds_available(amount_in_dollars):
print(f"Buying ${amount_in_dollars} of {ticker}...")
purchase_data.update(
robinhood.orders.order_buy_fractional_by_price(
ticker,
amount_in_dollars,
timeInForce="gfd",
extendedHours=False,
jsonify=True,
)
)
print(f"Successfully bought ${amount_in_dollars} of {ticker}.")
return purchase_data
def place_sell_order(self, ticker, amount_in_dollars):
"""Places a sell order for ticker with a specified amount.
Parameters
----------
ticker : str
A company's ticker symbol.
amount_in_dollars : float
The amount in USD to be used for the sale.
Returns
-------
sale_data : dict
Dictionary that contains information regarding the
sale of stocks, such as the order id, the state
of order (queued, confired, filled, failed, canceled,
etc.), the price, and the quantity.
"""
sale_data = {}
if not ticker or not amount_in_dollars:
print("ERROR: Parameters cannot have null values.")
return sale_data
if amount_in_dollars < 1:
print("ERROR: A sale cannot be made with less than $1.00 USD.")
return sale_data
# Must have enough equity for the sale
if self.has_sufficient_equity(ticker, amount_in_dollars):
print(f"Selling ${amount_in_dollars} of {ticker}...")
sale_data.update(
robinhood.orders.order_sell_fractional_by_price(
ticker,
amount_in_dollars,
timeInForce="gfd",
extendedHours=False,
jsonify=True,
)
)
print(f"Successfully sold ${amount_in_dollars} of {ticker}.")
return sale_data
def buy_with_available_funds(self, ticker):
"""Buys ticker with all available funds.
Parameters
----------
ticker : str
A company's ticker symbol.
Returns
-------
dict
Dictionary that contains information regarding the
purchase of stocks, such as the order id, the state
of order (queued, confired, filled, failed, canceled,
etc.), the price, and the quantity.
"""
if not ticker:
return {}
available_funds = float(
robinhood.profiles.load_account_profile(info="buying_power")
)
return self.place_buy_order(ticker, available_funds)
def sell_entire_position(self, ticker):
"""Sells user's entire position in ticker.
Parameters
----------
ticker : str
A company's ticker symbol.
Returns
-------
dict
Dictionary that contains information regarding the
sale of stocks, such as the order id, the state
of order (queued, confired, filled, failed, canceled,
etc.), the price, and the quantity.
"""
portfolio = robinhood.account.build_holdings()
if ticker in portfolio:
position = portfolio[ticker]
equity = float(position["equity"])
return self.place_sell_order(ticker, equity)
return {}
def liquidate_portfolio(self):
"""Completely sells all positions held.
Parameters
----------
None
Returns
-------
compiled_sale_information : list
A list of dictionaries containing information
regarding the purchase of stocks, such as the
order id, the state of order (queued, confired,
filled, failed, canceled, etc.), the price, and
the quantity for each position held.
"""
compiled_sale_information = []
portfolio = robinhood.account.build_holdings()
for ticker in portfolio.keys():
sale_information = self.sell_entire_position(ticker)
compiled_sale_information.append(sale_information)
return compiled_sale_information
def make_order_recommendation(self, ticker):
"""Makes an order recommendation for the given ticker.
Parameters
----------
ticker : str
A company's ticker symbol.
Returns
-------
None
"""
return None
def trade(self, ticker, amount_in_dollars):
"""Places buy/sell orders for fractional shares of stock.
Parameters
----------
ticker : str
A company's ticker symbol.
amount_in_dollars : float
The amount in USD to be used for a transaction.
Returns
-------
transaction_data : dict
Dictionary that contains information regarding the
purchase/sale of stocks, such as the order id, the
state of order (queued, confired, filled, failed,
canceled, etc.), the price, and the quantity.
"""
transaction_data = {}
action = self.make_order_recommendation(ticker)
if action == "buy":
transaction_data.update(self.place_buy_order(ticker, amount_in_dollars))
elif action == "sell":
transaction_data.update(self.place_sell_order(ticker, amount_in_dollars))
else:
print(
f"Conditions are not met for either a purchase or a sale of {ticker}."
)
return transaction_data
class TradeBotSimpleMovingAverage(TradeBot):
def calculate_simple_moving_average(self, stock_history_df, number_of_days):
"""Calculates the simple moving average based
on the number of days.
Parameters
----------
stock_history_df : pandas.DataFrame
DataFrame containing the stock's history.
number_of_days : int
The number of days used to calculate the n-day moving average.
Returns
-------
n_day_moving_average : float
The simple moving average for n days.
"""
if not stock_history_df:
print("ERROR: Parameters cannot have null values.")
return 0
if not number_of_days or number_of_days <= 0:
print("ERROR: number_of_days must be a positive number.")
return 0
# Typecast the column to numerics.
stock_history_df["close_price"] = pd.to_numeric(
stock_history_df["close_price"], errors="coerce"
)
# Consider only the last n days.
n_day_stock_history = stock_history_df.tail(number_of_days)
# Calculate the moving average.
n_day_moving_average = round(n_day_stock_history["close_price"].mean(), 2)
return n_day_moving_average
def make_order_recommendation(self, ticker):
"""Makes a recommendation for a market order by comparing
the 50-day moving average to the 200-day moving average.
Parameters
----------
ticker : str
A company's ticker symbol.
Returns
-------
str
A string with the order recommendation. Returns
'buy', 'sell', or None.
"""
if not ticker:
print("ERROR: Parameters cannot have null values.")
return None
# Construct a DataFrame with the stock history.
stock_history = robinhood.stocks.get_stock_historicals(
ticker, interval="day", span="year"
)
stock_history_df = pd.DataFrame(stock_history)
# Calculate the 200-day moving average.
moving_average_200_day = self.calculate_simple_moving_average(
stock_history_df, 200
)
# Calculate the 50-day moving average.
moving_average_50_day = self.calculate_simple_moving_average(
stock_history_df, 50
)
# Determine the order recommendation.
if moving_average_50_day > moving_average_200_day:
return "buy"
elif moving_average_50_day < moving_average_200_day:
return "sell"
else:
return None
class TradeBotVWAP(TradeBot):
def calculate_VWAP(self, stock_history_df):
"""Calculates the Volume-Weighted Average Price (VWAP).
Parameters
----------
stock_history_df : pandas.DataFrame
DataFrame containing the stock's history.
Returns
-------
vwap : float
The calculated Volume-Weighted Average Price.
"""
if not stock_history_df:
print("ERROR: Parameters cannot have null values.")
return 0
# Typecast the columns we need.
stock_history_df["close_price"] = pd.to_numeric(
stock_history_df["close_price"], errors="coerce"
)
stock_history_df["volume"] = pd.to_numeric(
stock_history_df["volume"], errors="coerce"
)
# Sum the volumes, and take the dot product of the volume and close_price columns.
sum_of_volumes = stock_history_df["volume"].sum()
dot_product_volumes_and_prices = stock_history_df["volume"].dot(
stock_history_df["close_price"]
)
# Calculate the average.
vwap = round(dot_product_volumes_and_prices / sum_of_volumes, 2)
return vwap
def make_order_recommendation(self, ticker):
"""Makes a recommendation for a market order by comparing
the Volume-Weighted Average Price (VWAP) to the current
market price.
Parameters
----------
ticker : str
A company's ticker symbol.
Returns
-------
str
A string with the order recommendation. Returns
'buy', 'sell', or None.
"""
if not ticker:
print("ERROR: Parameters cannot have null values.")
return None
# Retrieve the stock history and place into a DataFrame.
stock_history = robinhood.stocks.get_stock_historicals(
ticker, interval="5minute", span="day"
)
stock_history_df = pd.DataFrame(stock_history)
# Calculate the VWAP from the last day in 5 minute intervals.
vwap = self.calculate_VWAP(stock_history_df)
# Get the current market price of the stock.
current_price = float(
robinhood.stocks.get_latest_price(ticker, includeExtendedHours=False)[0]
)
# Determine the order recommendation.
if current_price < vwap:
return "buy"
elif current_price > vwap:
return "sell"
else:
return None
class TradeBotSentimentAnalysis(TradeBot):
def retrieve_tweets(self, ticker, max_count=100):
"""Retrieves tweets from Twitter about ticker.
Parameters
----------
ticker : str
A company's ticker symbol.
max_count : int
The maximum number of tweets to retrieve.
Returns
-------
searched_tweets : list
A list of texts of the retrieved tweets.
"""
searched_tweets = []
if not ticker:
print("ERROR: Parameters cannot have null values.")
return searched_tweets
if max_count <= 0:
print("ERROR: max_count must be a positive number.")
return searched_tweets
# Connect to the Twitter API.
auth = tweepy.AppAuthHandler(TWITTER_CONSUMER_KEY, TWITTER_CONSUMER_SECRET)
api = tweepy.API(auth)
# Retrieve the company name represented by ticker.
company_name = robinhood.stocks.get_name_by_symbol(ticker)
query = f"#{company_name} OR ${ticker}"
# Search for max_counts tweets mentioning the company.
public_tweets = tweepy.Cursor(
api.search_tweets,
q=query,
lang="en",
result_type="recent",
tweet_mode="extended",
).items(max_count)
# Extract the text body of each tweet.
searched_tweets = []
for tweet in public_tweets:
try:
searched_tweets.append(tweet.retweeted_status.full_text)
except AttributeError: # Not a Retweet
searched_tweets.append(tweet.full_text)
return searched_tweets
def analyze_tweet_sentiments(self, tweets):
"""Analyzes the sentiments of each tweet and returns the average
sentiment.
Parameters
----------
tweets: list
A list of the text from tweets.
Returns
-------
average_sentiment_score : float
The mean of all the sentiment scores from
the list of tweets.
"""
if not tweets:
print("ERROR: Parameters cannot have null values.")
return 0
analyzer = SentimentIntensityAnalyzer()
# Initialize an empty DataFrame.
column_names = ["tweet", "sentiment_score"]
tweet_sentiments_df = pd.DataFrame(columns=column_names)
# Get the sentiment score for each tweet and append the text
# and sentiment_score into the DataFrame.
for tweet in tweets:
score = analyzer.polarity_scores(tweet)["compound"]
tweet_sentiment = {"tweet": tweet, "sentiment_score": score}
tweet_sentiments_df = tweet_sentiments_df.append(
tweet_sentiment, ignore_index=True
)
# Calculate the average sentiment score.
average_sentiment_score = tweet_sentiments_df["sentiment_score"].mean()
return average_sentiment_score
def make_order_recommendation(self, ticker):
"""Makes an order recommendation based on the sentiment of
max_count tweets about ticker.
Parameters
----------
ticker : str
A company's ticker symbol.
Returns
-------
str
A string with the order recommendation. Returns
'buy', 'sell', or None.
"""
if not ticker:
print("ERROR: Parameters cannot have null values.")
return None
public_tweets = self.retrieve_tweets(ticker)
consensus_score = self.analyze_tweet_sentiments(public_tweets)
if consensus_score >= 0.05:
return "buy"
elif consensus_score <= -0.05:
return "sell"
else:
return None
class TradeBotExponentialMovingAverage(TradeBotSimpleMovingAverage):
pass