|
| 1 | +from typing import Dict, List |
| 2 | + |
| 3 | +import gradio as gr |
| 4 | + |
| 5 | +from xinference.client import Client |
| 6 | + |
| 7 | +if __name__ == "__main__": |
| 8 | + import argparse |
| 9 | + import textwrap |
| 10 | + |
| 11 | + parser = argparse.ArgumentParser( |
| 12 | + formatter_class=argparse.RawDescriptionHelpFormatter, |
| 13 | + epilog=textwrap.dedent( |
| 14 | + """\ |
| 15 | + instructions to run: |
| 16 | + 1. Install Xinference and Llama-cpp-python |
| 17 | + 2. Run 'xinference --host "localhost" --port 9997' in terminal |
| 18 | + 3. Run this python file in new terminal window |
| 19 | +
|
| 20 | + e.g. (feel free to copy) |
| 21 | + python gradio_chatinterface.py \\ |
| 22 | + --endpoint http://localhost:9997 \\ |
| 23 | + --model_name vicuna-v1.3 \\ |
| 24 | + --model_size_in_billions 7 \\ |
| 25 | + --model_format ggmlv3 \\ |
| 26 | + --quantization q2_K |
| 27 | +
|
| 28 | + If you decide to change the port number in step 2, |
| 29 | + please also change the endpoint in the arguments |
| 30 | + """ |
| 31 | + ), |
| 32 | + ) |
| 33 | + |
| 34 | + parser.add_argument( |
| 35 | + "--endpoint", type=str, required=True, help="Xinference endpoint, required" |
| 36 | + ) |
| 37 | + parser.add_argument( |
| 38 | + "--model_name", type=str, required=True, help="Name of the model, required" |
| 39 | + ) |
| 40 | + parser.add_argument( |
| 41 | + "--model_size_in_billions", |
| 42 | + type=int, |
| 43 | + required=False, |
| 44 | + help="Size of the model in billions", |
| 45 | + ) |
| 46 | + parser.add_argument( |
| 47 | + "--model_format", |
| 48 | + type=str, |
| 49 | + required=False, |
| 50 | + help="Format of the model", |
| 51 | + ) |
| 52 | + parser.add_argument( |
| 53 | + "--quantization", type=str, required=False, help="Quantization of the model" |
| 54 | + ) |
| 55 | + |
| 56 | + args = parser.parse_args() |
| 57 | + |
| 58 | + endpoint = args.endpoint |
| 59 | + model_name = args.model_name |
| 60 | + model_size_in_billions = args.model_size_in_billions |
| 61 | + model_format = args.model_format |
| 62 | + quantization = args.quantization |
| 63 | + |
| 64 | + print(f"Xinference endpoint: {endpoint}") |
| 65 | + print(f"Model Name: {model_name}") |
| 66 | + print(f"Model Size (in billions): {model_size_in_billions}") |
| 67 | + print(f"Model Format: {model_format}") |
| 68 | + print(f"Quantization: {quantization}") |
| 69 | + |
| 70 | + client = Client(endpoint) |
| 71 | + model_uid = client.launch_model( |
| 72 | + model_name, |
| 73 | + model_size_in_billions=model_size_in_billions, |
| 74 | + model_format=model_format, |
| 75 | + quantization=quantization, |
| 76 | + n_ctx=2048, |
| 77 | + ) |
| 78 | + model = client.get_model(model_uid) |
| 79 | + |
| 80 | + def flatten(matrix: List[List[str]]) -> List[str]: |
| 81 | + flat_list = [] |
| 82 | + for row in matrix: |
| 83 | + flat_list += row |
| 84 | + return flat_list |
| 85 | + |
| 86 | + def to_chat(lst: List[str]) -> List[Dict[str, str]]: |
| 87 | + res = [] |
| 88 | + for i in range(len(lst)): |
| 89 | + role = "assistant" if i % 2 == 1 else "user" |
| 90 | + res.append( |
| 91 | + { |
| 92 | + "role": role, |
| 93 | + "content": lst[i], |
| 94 | + } |
| 95 | + ) |
| 96 | + return res |
| 97 | + |
| 98 | + def generate_wrapper(message: str, history: List[List[str]]) -> str: |
| 99 | + output = model.chat( |
| 100 | + prompt=message, |
| 101 | + chat_history=to_chat(flatten(history)), |
| 102 | + generate_config={"max_tokens": 512, "stream": False}, |
| 103 | + ) |
| 104 | + return output["choices"][0]["message"]["content"] |
| 105 | + |
| 106 | + demo = gr.ChatInterface( |
| 107 | + fn=generate_wrapper, |
| 108 | + examples=[ |
| 109 | + "Show me a two sentence horror story with a plot twist", |
| 110 | + "Generate a Haiku poem using trignometry as the central theme", |
| 111 | + "Write three sentences of scholarly description regarding a supernatural beast", |
| 112 | + "Prove there does not exist a largest integer", |
| 113 | + ], |
| 114 | + title="Xinference Chat Bot", |
| 115 | + ) |
| 116 | + demo.launch() |
0 commit comments