This repository has been archived by the owner on Aug 5, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
186 lines (157 loc) · 6.64 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
from torch.utils.data import DataLoader
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torch
from tensorboardX import SummaryWriter
from albumentations import *
from models import YoloNet
from config import Config
from trainer import Trainer
from data_loader import DataTransformBase
def train_process(args, total_config, dataset_class, data_transform_class, params):
# --------------------------------------------------------------------------#
# prepare dataset
# --------------------------------------------------------------------------#
def _worker_init_fn_():
import random
import numpy as np
import torch
torch.manual_seed(args.random_seed)
np.random.seed(args.random_seed)
random.seed(args.random_seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(args.random_seed)
input_size = (params["img_h"], params["img_w"])
transforms = [
OneOf([IAAAdditiveGaussianNoise(), GaussNoise()], p=0.5),
OneOf([MedianBlur(blur_limit=3), GaussianBlur(blur_limit=3), MotionBlur(blur_limit=3),], p=0.1,),
RandomGamma(gamma_limit=(80, 120), p=0.5),
RandomBrightnessContrast(p=0.5),
HueSaturationValue(hue_shift_limit=5, sat_shift_limit=20, val_shift_limit=10, p=0.5),
ChannelShuffle(p=0.5),
HorizontalFlip(p=0.5),
Cutout(num_holes=5, max_w_size=40, max_h_size=40, p=0.5),
Rotate(limit=20, p=0.5, border_mode=0),
]
data_transform = data_transform_class(transforms=transforms, input_size=input_size)
train_dataset = dataset_class(
data_path=total_config.DATA_PATH,
phase="train",
normalize_bbox=True,
transform=[data_transform],
multiscale=args.multiscale,
resize_after_batch_num=args.resize_after_batch_num,
)
val_dataset = dataset_class(
data_path=total_config.DATA_PATH, phase="val", normalize_bbox=True, transform=data_transform,
)
train_data_loader = DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True,
collate_fn=train_dataset.od_collate_fn,
num_workers=args.num_workers,
drop_last=True,
worker_init_fn=_worker_init_fn_(),
)
val_data_loader = DataLoader(
val_dataset,
batch_size=args.batch_size,
shuffle=False,
collate_fn=val_dataset.od_collate_fn,
num_workers=args.num_workers,
drop_last=True,
)
data_loaders_dict = {"train": train_data_loader, "val": val_data_loader}
# --------------------------------------------------------------------------#
# configuration for training
# --------------------------------------------------------------------------#
tblogger = SummaryWriter(total_config.LOG_PATH)
model = YoloNet(dataset_config=params)
if args.backbone_weight_path:
model.feature.load_weight(args.backbone_weight_path)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
criterion = None
base_lr_rate = args.lr_rate / (args.batch_size * args.batch_multiplier)
base_weight_decay = args.weight_decay * (args.batch_size * args.batch_multiplier)
steps = [float(v.strip()) for v in args.steps.split(",")]
scales = [float(v.strip()) for v in args.scales.split(",")]
def adjust_learning_rate(optimizer, processed_batch):
lr = base_lr_rate
for i in range(len(steps)):
scale = scales[i] if i < len(scales) else 1
if processed_batch >= steps[i]:
lr = lr * scale
if processed_batch == steps[i]:
break
else:
break
for param_group in optimizer.param_groups:
param_group["lr"] = lr / args.batch_size
return lr
optimizer = torch.optim.SGD(
model.parameters(), lr=base_lr_rate, momentum=args.momentum, weight_decay=base_weight_decay,
)
trainer = Trainer(
model=model,
criterion=criterion,
metric_func=None,
optimizer=optimizer,
num_epochs=args.num_epoch,
save_period=args.save_period,
config=total_config,
data_loaders_dict=data_loaders_dict,
device=device,
dataset_name_base=train_dataset.__name__,
batch_multiplier=args.batch_multiplier,
adjust_lr_callback=adjust_learning_rate,
logger=tblogger,
)
if args.snapshot and os.path.isfile(args.snapshot):
trainer.resume_checkpoint(args.snapshot)
with torch.autograd.set_detect_anomaly(True):
trainer.train()
tblogger.close()
def main(args):
total_config = Config()
total_config.display()
if not args.dataset or args.dataset not in total_config.DATASETS.keys():
raise Exception("specify one of the datasets to use in {}".format(list(total_config.DATASETS.keys())))
dataset = args.dataset
dataset_class = total_config.DATASETS[dataset]
data_transform_class = DataTransformBase
params = total_config.DATASET_PARAMS[dataset]
train_process(args, total_config, dataset_class, data_transform_class, params)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", type=int, default=2)
parser.add_argument("--num_epoch", type=int, default=300)
parser.add_argument("--lr_rate", type=float, default=1e-3)
parser.add_argument("--batch_multiplier", type=int, default=1)
parser.add_argument("--momentum", default=0.9, type=float)
parser.add_argument("--weight_decay", default=5e-4, type=float)
parser.add_argument("--burn_in", default=1000, type=int)
parser.add_argument("--steps", default="40000,45000", type=str)
parser.add_argument("--scales", default=".1,.1", type=str)
parser.add_argument("--gamma", default=0.1, type=float)
parser.add_argument("--milestones", default="120, 220", type=str)
parser.add_argument("--save_period", type=int, default=1)
parser.add_argument("--backbone_weight_path", type=str)
parser.add_argument("--multiscale", type=bool, default=True)
parser.add_argument("--resize_after_batch_num", type=int, default=10)
parser.add_argument("--snapshot", type=str, help="path to snapshot weights")
parser.add_argument(
"--dataset",
required=True,
type=str,
help="name of the dataset to use",
choices=["bird_dataset", "switch_dataset", "wheat_dataset"],
)
parser.add_argument("--random_seed", type=int, default=12)
parser.add_argument("--num_workers", type=int, default=4)
parsed_args = parser.parse_args()
main(parsed_args)