forked from roimehrez/contextualLoss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsingle_image_animation.py
162 lines (135 loc) · 7.02 KB
/
single_image_animation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# ---------------------------------------------------
# code credits: https://github.com/CQFIO/PhotographicImageSynthesis
# ---------------------------------------------------
from __future__ import division
import time
import utils.helper as helper
from CX.CX_helper import *
from model import *
from utils.FetchManager import *
sess = tf.Session()
# ---------------------------------------------------
# graph
# ---------------------------------------------------
with tf.variable_scope(tf.get_variable_scope()):
input_A = tf.placeholder(tf.float32, [None, None, None, 3])
input_B = tf.placeholder(tf.float32, [None, None, None, 3])
input_A_test = tf.placeholder(tf.float32, [None, None, None, 3])
input_image_A, real_image_B = helper.random_crop_together(input_A, input_B, [2, config.TRAIN.resize[0], config.TRAIN.resize[1], 3])
with tf.variable_scope("g") as scope:
generator = recursive_generator(input_image_A, config.TRAIN.sp)
scope.reuse_variables()
generator_test = recursive_generator(input_A_test, config.TRAIN.sp)
weight = tf.placeholder(tf.float32)
vgg_real = build_vgg19(real_image_B)
vgg_fake = build_vgg19(generator, reuse=True)
vgg_input = build_vgg19(input_image_A, reuse=True)
## --- contextual style/target---
if config.W.CX > 0:
CX_loss_list = [w * CX_loss_helper(vgg_real[layer], vgg_fake[layer], config.CX)
for layer, w in config.CX.feat_layers.items()]
CX_style_loss = tf.reduce_sum(CX_loss_list)
CX_style_loss *= config.W.CX
else:
CX_style_loss = zero_tensor
## --- contextual content/source---
if config.W.CX_content > 0:
CX_loss_content_list = [w * CX_loss_helper(vgg_input[layer], vgg_fake[layer], config.CX)
for layer, w in config.CX.feat_content_layers.items()]
CX_content_loss = tf.reduce_sum(CX_loss_content_list)
CX_content_loss *= config.W.CX_content
else:
CX_content_loss = zero_tensor
## --- total loss ---
G_loss = CX_style_loss + CX_content_loss
# create the optimization
lr = tf.placeholder(tf.float32)
var_list = [var for var in tf.trainable_variables() if var.name.startswith('g/g_')]
G_opt = tf.train.AdamOptimizer(learning_rate=lr).minimize(G_loss, var_list=var_list)
saver = tf.train.Saver(max_to_keep=1000)
sess.run(tf.global_variables_initializer())
# load from checkpoint if exist
def load(dir):
ckpt = tf.train.get_checkpoint_state(dir)
if ckpt:
print('loaded ' + ckpt.model_checkpoint_path)
saver.restore(sess, ckpt.model_checkpoint_path)
return ckpt
ckpt = load(config.TRAIN.out_dir)
# ---------------------------------------------------
# train
# ---------------------------------------------------
if config.TRAIN.is_train:
file_list = os.listdir(config.base_dir + config.TRAIN.A_data_dir)
val_file_list = os.listdir(config.base_dir + config.VAL.A_data_dir)
file_list = np.random.permutation(file_list)
assert len(file_list) > 0
train_file_list = file_list[0::config.TRAIN.every_nth_frame]
val_file_list = val_file_list[0::config.VAL.every_nth_frame]
g_loss = np.zeros(len(train_file_list), dtype=float)
fetcher = FetchManager(sess, [G_opt, G_loss])
B_file_name = config.single_image_B_file_name
B_image = helper.read_image(B_file_name) # training image B
## ------------ epoch loop -------------------------
for epoch in range(1, config.TRAIN.num_epochs + 1):
epoch_dir = config.TRAIN.out_dir + "/%04d" % epoch
if os.path.isdir(epoch_dir):
continue
cnt = 0
## ------------ batch loop -------------------------
for ind in np.random.permutation(len(train_file_list)):#
st = time.time()
cnt += 1
A_file_name = config.base_dir + config.TRAIN.A_data_dir + '/' + train_file_list[ind]
if not os.path.isfile(A_file_name) or not os.path.isfile(A_file_name):
continue
A_image = helper.read_image(A_file_name) # training image A
feed_dict = {input_A: A_image, input_B: B_image, lr: 1e-4}
#session run
eval = fetcher.fetch(feed_dict, [CX_style_loss, CX_content_loss])
g_loss[ind] = eval[G_loss]
log = "epoch:%d | cnt:%d | time:%.2f | loss:%.2f || dis_style:%.2f | dis_content:%.2f " % \
(epoch, cnt, time.time() - st, np.mean(g_loss[np.where(g_loss)]), eval[CX_style_loss], eval[CX_content_loss])
print(log)
##------------ end batch loop -------------------
# -------------- save the model ------------------
# we use loop with try and catch to verify that the save was done. when saving on Dropbox it sometimes cause an error.
for i in range(5):
try:
if not os.path.exists(epoch_dir):
os.makedirs(epoch_dir)
helper.write_loss_in_txt(g_loss, epoch)
saver.save(sess, config.TRAIN.out_dir + "/model.ckpt")
except:
time.sleep(1)
## ------------ validation loop -------------------------
for ind in range(len(val_file_list)):
A_file_name_val = config.base_dir + config.VAL.A_data_dir + '/' + val_file_list[ind]
if not os.path.isfile(A_file_name_val): # test label
continue
A_image_val = helper.read_image(A_file_name_val) # training image A
# B_image_val = helper.read_image(B_file_name_val) # training image A
output = sess.run(generator_test, feed_dict={input_A_test: A_image_val})
output = np.concatenate([A_image_val, output, B_image], axis=2)
helper.save_image(output, config.TRAIN.out_dir + "/%04d/" % epoch + val_file_list[ind].replace('.jpg', '_out.jpg'))
# ---------------------------------------------------
# test
# ---------------------------------------------------
if config.TEST.is_test:
test_file_list = os.listdir(config.base_dir + config.TEST.A_data_dir)
if not os.path.isdir(config.TEST.out_dir + config.TEST.out_dir_postfix):
os.makedirs(config.TEST.out_dir + config.TEST.out_dir_postfix)
time_list = np.zeros(len(test_file_list), dtype=float)
for ind in range(len(test_file_list)):
A_file_name_val = config.base_dir + config.TEST.A_data_dir + '/' + test_file_list[ind]
if not os.path.isfile(A_file_name_val):
continue
A_image_val = helper.read_image(A_file_name_val, fliplr=False) # training image A
st = time.time()
output = sess.run(generator_test, feed_dict={input_A_test: A_image_val})
et = time.time()
output = np.concatenate([A_image_val, output], axis=2)#B_image_val
helper.save_image(output, config.TEST.out_dir + config.TEST.out_dir_postfix + "/" + test_file_list[ind].replace('.jpg', '_out.jpg'))
time_list[ind] = et - st
print("test for image #: %d, time: %1.4f" % (ind, et - st))
print('average time per image: %f' % time_list.mean())