-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCUR_D.py
257 lines (234 loc) · 8.46 KB
/
CUR_D.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# -*- coding: utf-8 -*-
"""
Created on sat Nov 21 18:09:37 2020
@author: Jalaj
"""
import numpy as np
from math import sqrt
from SV_D import building_matrix_svd_for
from SV_D import energy_90_top
from Stats import for_getting_metrics
import timeit
from sklearn.metrics import mean_squared_error
def C_1_U_1_R(k):
"""
performs the CUR decomposition on the user matrix and stores them as numpy arrays.
Parameters
----------
k :
number of rows and columns taken
Returns
-------
None.
"""
matrix_of_user_movie = np.load('train.npy')
ssq_sum = 0 #sum of squares of all elements
users_of_numbers = matrix_of_user_movie.shape[0]
movies_of_numbers = matrix_of_user_movie[0].size
for i in range(users_of_numbers):
for j in range(movies_of_numbers):
ssq_sum = ssq_sum + matrix_of_user_movie[i][j]*matrix_of_user_movie[i][j]
users_probabilities = []
movies_probabilities = []
for i in range(users_of_numbers):
ssq_of_row = 0 #
for j in range(movies_of_numbers):
ssq_of_row = ssq_of_row + matrix_of_user_movie[i][j]*matrix_of_user_movie[i][j]
users_probabilities.append(ssq_of_row/ssq_sum)#computing user probabilities
for j in range(movies_of_numbers):
ssq_of_column = 0
for i in range(users_of_numbers):
ssq_of_column = ssq_of_column + matrix_of_user_movie[i][j]*matrix_of_user_movie[i][j]
movies_probabilities.append(ssq_of_column/ssq_sum)#computing movie probabilties
users_that_are_top = np.random.choice(len(users_probabilities),k, replace=False, p=users_probabilities) #sampling rows
movies_that_are_top = np.random.choice(len(movies_probabilities),k, replace=False, p=movies_probabilities) #sampling columns
movies_that_are_top.sort()
users_that_are_top.sort()
C = []
R = []
for i in users_that_are_top:
R.append(list(matrix_of_user_movie[i]/sqrt(k*users_probabilities[i])))
for j in movies_that_are_top:
C.append(list(matrix_of_user_movie[:,j]/sqrt(k*movies_probabilities[j])))
Ct = np.transpose(C)
W = []
for i in users_that_are_top:
X=[]
for j in movies_that_are_top:
X.append(matrix_of_user_movie[i][j])#intersection of sampled rows and columns
W.append(np.array(X))
W = np.array(W)
x,yt,sigma = building_matrix_svd_for(W)#SVD of intersection
sigm_pinv = np.linalg.pinv(sigma) #Moore Penrose Pseudo Inverse
sig_sq = np.linalg.matrix_power(sigm_pinv, 2)#square of pseudo-inverse
y = np.transpose(yt)
xt = np.transpose(x)
U = np.matmul(y, sig_sq)
U = np.matmul(U, xt) #reconstructing U
np.save('cur_ct.npy', Ct)
np.save('cur_r.npy', R)
new_x, new_yt, new_sigma = energy_90_top(x,yt,sigma)
pinv_new_sigma = np.linalg.pinv(new_sigma)
new_sig_sq = np.linalg.matrix_power(pinv_new_sigma, 2)
y = np.transpose(new_yt)
xt = np.transpose(new_x)
U = np.matmul(y, new_sig_sq)
U = np.matmul(U, xt)
np.save('cur_u.npy', U)
def C_1_U_90_1_R(k):
"""
performs the CUR decomposition on the user matrix with 90% retained energy and stores them as numpy arrays
Parameters
----------
k :
number of rows and columns and taken
Returns
-------
None.
"""
matrix_of_user_movie = np.load('train.npy')
#[[1,1,1,0,0],[3,3,3,0,0],[4,4,4,0,0],[5,5,5,0,0],[0,0,0,4,4],[0,0,0,5,5],[0,0,0,2,2]]
ssq_sum = 0 #sum of squares of all elements
users_of_numbers = matrix_of_user_movie.shape[0]
movies_of_numbers = matrix_of_user_movie[0].size
for i in range(users_of_numbers):
for j in range(movies_of_numbers):
ssq_sum = ssq_sum + matrix_of_user_movie[i][j]*matrix_of_user_movie[i][j]
users_probabilities = []
movies_probabilities = []
for i in range(users_of_numbers):
ssq_of_row = 0 #
for j in range(movies_of_numbers):
ssq_of_row = ssq_of_row + matrix_of_user_movie[i][j]*matrix_of_user_movie[i][j]
users_probabilities.append(ssq_of_row/ssq_sum)#computing user probabilities
for j in range(movies_of_numbers):
ssq_of_column = 0
for i in range(users_of_numbers):
ssq_of_column = ssq_of_column + matrix_of_user_movie[i][j]*matrix_of_user_movie[i][j]
movies_probabilities.append(ssq_of_column/ssq_sum)#computing movie probabilties
users_that_are_top = np.random.choice(len(users_probabilities),k, replace=False, p=users_probabilities) #sampling rows
movies_that_are_top = np.random.choice(len(movies_probabilities),k, replace=False, p=movies_probabilities) #sampling columns
movies_that_are_top.sort()
users_that_are_top.sort()
C = []
R = []
for i in users_that_are_top:
R.append(list(matrix_of_user_movie[i]/sqrt(k*users_probabilities[i])))
for j in movies_that_are_top:
C.append(list(matrix_of_user_movie[:,j]/sqrt(k*movies_probabilities[j])))
Ct = np.transpose(C)
W = []
for i in users_that_are_top:
X=[]
for j in movies_that_are_top:
X.append(matrix_of_user_movie[i][j])#intersection of sampled rows and columns
W.append(np.array(X))
W = np.array(W)
x,yt,sigma = building_matrix_svd_for(W)#SVD of intersection
sigm_pinv = np.linalg.pinv(sigma) #Moore Penrose Pseudo Inverse
sig_sq = np.linalg.matrix_power(sigm_pinv, 2)#square of pseudo-inverse
y = np.transpose(yt)
xt = np.transpose(x)
U = np.matmul(y, sig_sq)
U = np.matmul(U, xt) #reconstructing U
np.save('cur_ct_90.npy', Ct)
np.save('cur_r_90.npy', R)
new_x, new_yt, new_sigma = energy_90_top(x,yt,sigma)#SVD with top 90% energy
pinv_new_sigma = np.linalg.pinv(new_sigma)
new_sig_sq = np.linalg.matrix_power(pinv_new_sigma, 2)
y = np.transpose(new_yt)
xt = np.transpose(new_x)
U = np.matmul(y, new_sig_sq)
U = np.matmul(U, xt)
np.save('cur_u_90.npy', U)
def srcr(matrix,final):
"""
calculates spearman rank correlation coefficient
Parameters
----------
matrix :
train values matrix
final :
C*U*R
Returns
-------
values :
Spearman Rank Correlation.
"""
freq=0
sum=0
for i in range(0,len(matrix)):
for j in range(0,len(matrix[i])):
sum=sum+(matrix[i][j]-final[i][j])**2
freq=freq+1
sum=6*sum
flag=(freq**3)-freq
values=1-(sum/flag)
return values
def cur_ponk_precision(mat, final):
"""
calculating precision on top k for CUR
Parameters
----------
mat :
train values matrix.
final :
C*U*R
Returns
-------
Precision/100:
precision on top K
"""
k_mat=final.tolist()
freq=0.00
dart=0.00
for i in range(0,len(mat)):
for j in range(0,len(mat[i])):
freq=freq+1
a=int(round(mat[i][j]))
b=int(round(k_mat[i][j]))
if (a==b):
dart=dart+1
precision=(dart*100)/freq
return precision/100
def main():
start=timeit.default_timer()
C_1_U_1_R(600)
print("Time taken")
stop=timeit.default_timer()
print("%s seconds" %(stop-start))
C_1_U_90_1_R(600)
print("Time taken for 90%")
stop=timeit.default_timer()
print("%s seconds" %(stop-start))
Ct = np.load('cur_ct.npy')
A = np.load('train.npy')
#[[1,1,1,0,0],[3,3,3,0,0],[4,4,4,0,0],[5,5,5,0,0],[0,0,0,4,4],[0,0,0,5,5],[0,0,0,2,2]]
R = np.load('cur_r.npy')
U = np.load('cur_u.npy')
final = np.matmul(Ct, U)
final = np.matmul(final, R)
rmse_err=sqrt(mean_squared_error(A, final))
print("RMSE error is :")
print(rmse_err)
print("Precision on top k is :")
ans=cur_ponk_precision(A, final)
print(ans)
answer = srcr(A, final)
print("Spearman Rank Correlation is ", answer)
Ct_90 = np.load('cur_ct_90.npy')
R_90 = np.load('cur_r_90.npy')
U_90 = np.load('cur_u_90.npy')
final_90 = np.matmul(Ct_90, U_90)
final_90 = np.matmul(final_90, R_90)
rmse_err_90=sqrt(mean_squared_error(A, final_90))
print("RMSE error for 90% is :")
print(rmse_err_90)
print("Precision on top k for 90% is :")
ans_90=cur_ponk_precision(A, final_90)
print(ans_90)
answer_90 = srcr(A, final_90)
print("Spearman Rank Correlation for 90% is ", answer_90)
del A
if __name__ == '__main__':
main()