|
| 1 | +import pandas as pd |
| 2 | + |
| 3 | +# Config settings |
| 4 | +pd.set_option('max_columns', None) |
| 5 | +pd.set_option('max_rows', 12) |
| 6 | + |
| 7 | +# Import CSV data |
| 8 | +data_frames = pd.read_csv (r'simulated_data.csv') |
| 9 | + |
| 10 | +# Data Type Conversion |
| 11 | +# Remove '$' from donation strings |
| 12 | +data_frames['donation'] = data_frames['donation'].str.strip('$') |
| 13 | + |
| 14 | +# Convert donation stings into numerical data type |
| 15 | +data_frames['donation'] = data_frames['donation'].astype('float64') |
| 16 | + |
| 17 | + |
| 18 | +# Handle Data Inconsistencies |
| 19 | +# Normalize strings |
| 20 | +data_frames['street_address'] = data_frames['street_address'].str.split() |
| 21 | + |
| 22 | +def normalize_words(arr): |
| 23 | + for index, word in enumerate(arr): |
| 24 | + if index == 0: |
| 25 | + pass |
| 26 | + else: |
| 27 | + arr[index] = normalize(word) |
| 28 | + |
| 29 | +def normalize(word): |
| 30 | + if word.lower() == 'st': |
| 31 | + word = 'street' |
| 32 | + elif word.lower() == 'rd': |
| 33 | + word = 'road' |
| 34 | + |
| 35 | + return word.capitalize() |
| 36 | + |
| 37 | + |
| 38 | +data_frames['street_address'].apply(lambda x: normalize_words(x)) |
| 39 | +data_frames['street_address'] = data_frames['street_address'].str.join(' ') |
| 40 | + |
| 41 | + |
| 42 | +# Remove Out-of-Range Data |
| 43 | +# create boolean Series for out of range donations |
| 44 | +out_of_range = data_frames['donation'] < 0 |
| 45 | + |
| 46 | +# keep only the rows that are NOT out of range |
| 47 | +data_frames['donation'] = data_frames['donation'][~out_of_range] |
| 48 | + |
| 49 | + |
| 50 | +# Remove duplicates |
| 51 | +columns_to_check = ['first_name', 'last_name', 'street_address', 'city', 'state'] |
| 52 | +data_frames_no_dupes = data_frames.drop_duplicates(subset=columns_to_check, keep='first') |
| 53 | + |
| 54 | + |
| 55 | +# Drop Missing Data |
| 56 | +columns_to_check = ['state', 'donation'] |
| 57 | +data_frames_no_missing = data_frames_no_dupes.dropna(subset=columns_to_check) |
| 58 | + |
| 59 | + |
| 60 | +print(data_frames_no_missing.head(20)) |
0 commit comments