-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
105 lines (91 loc) · 4.9 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from tensorflow import keras
import numpy as np
from utils import *
from tqdm import *
import tensorflow as tf
import tensorflow.keras.backend as K
from tensorflow.keras.layers import *
class evaluate:
def __init__(self,dev_pair):
self.dev_pair = dev_pair
Matrix_A = Input(shape=(None,None))
Matrix_B = Input(shape=(None,None))
def dot(tensor):
k = 10
A,B = [K.squeeze(matrix,axis=0) for matrix in tensor]
A_sim = K.dot(A,K.transpose(B))
return K.expand_dims(A_sim,axis=0)
results = Lambda(dot)([Matrix_A,Matrix_B])
self.sim_model = keras.Model(inputs = [Matrix_A,Matrix_B],outputs = results)
k = 10
Matrix_A = Input(shape=(None,None))
results = Lambda(lambda x: K.expand_dims(K.sum(tf.nn.top_k(K.squeeze(x,axis=0),k=k)[0],axis=-1) / k,axis=0))(Matrix_A)
self.avg_model = keras.Model(inputs = [Matrix_A],outputs = results)
Matrix_A = Input(shape=(None,None))
LR_input = Input(shape=(None,))
RL_input = Input(shape=( None,))
Ans_input = Input(shape=(None,))
def CSLS(tensor):
sim,LR,RL,_ = [K.squeeze(m,axis=0) for m in tensor]
LR,RL = [K.expand_dims(m,axis=1) for m in [LR,RL]]
sim = 2*sim - K.transpose(LR)
sim = sim - RL
rank = tf.argsort(-sim,axis=-1)
rank_value = -tf.sort(-sim,axis=-1)
return [K.expand_dims(rank[:,0],axis=0),K.expand_dims((rank_value[:,0]-rank_value[:,1]),axis=0)]
rank = Lambda(CSLS)([Matrix_A,LR_input,RL_input,Ans_input])
self.rank_model = keras.Model(inputs = [Matrix_A,LR_input,RL_input,Ans_input],outputs = rank)
Matrix_A = Input(shape=(None,None))
LR_input = Input(shape=(None,))
RL_input = Input(shape=(None,))
Ans_input = Input(shape=(None,))
def CSLS(tensor):
sim,LR,RL,ans_rank = [K.squeeze(m,axis=0) for m in tensor]
LR,RL,ans_rank = [K.expand_dims(m,axis=1) for m in [LR,RL,ans_rank]]
sim = 2*sim - K.transpose(LR)
sim = sim - RL
rank = tf.argsort(-sim,axis=-1)
results = tf.where(tf.equal(rank,K.cast(K.tile(ans_rank,[1,len(self.dev_pair)]),dtype="int32")))
return K.expand_dims(results,axis=0)
results = Lambda(CSLS)([Matrix_A,LR_input,RL_input,Ans_input])
self.CSLS_model = keras.Model(inputs = [Matrix_A,LR_input,RL_input,Ans_input],outputs = results)
def CSLS_cal(self, Lvec,Rvec,evaluate = True,batch_size = 1024):
L_sim,R_sim = [],[]
for epoch in range(len(Lvec) // batch_size + 1):
L_sim.append(self.sim_model.predict([np.expand_dims(Lvec[epoch * batch_size:(epoch + 1) * batch_size],axis=0),np.expand_dims(Rvec,axis=0)]))
R_sim.append(self.sim_model.predict([np.expand_dims(Rvec[epoch * batch_size:(epoch + 1) * batch_size],axis=0),np.expand_dims(Lvec,axis=0)]))
LR,RL = [],[]
for epoch in range(len(Lvec) // batch_size + 1):
LR.append(self.avg_model.predict([L_sim[epoch]]))
RL.append(self.avg_model.predict([R_sim[epoch]]))
if evaluate:
results = []
for epoch in range(len(Lvec) // batch_size + 1):
ans_rank = np.array([i for i in range(epoch * batch_size,min((epoch+1) * batch_size,len(Lvec)))])
result = self.CSLS_model.predict([R_sim[epoch],np.concatenate(LR,axis=1),RL[epoch],np.expand_dims(ans_rank,axis=0)])
results.append(result)
return np.concatenate(results,axis=1)[0]
else:
l_rank,r_rank,l_value,r_value = [],[],[],[]
for epoch in range(len(Lvec) // batch_size + 1):
ans_rank = np.array([i for i in range(epoch * batch_size,min((epoch+1) * batch_size,len(Lvec)))])
rr,rv = self.rank_model.predict([R_sim[epoch],np.concatenate(LR,axis=1),RL[epoch],np.expand_dims(ans_rank,axis=0)])
lr,lv = self.rank_model.predict([L_sim[epoch],np.concatenate(RL,axis=1),LR[epoch],np.expand_dims(ans_rank,axis=0)])
l_rank.append(lr); r_rank.append(rr); l_value.append(lv); r_value.append(rv);
return np.concatenate(r_rank,axis=1)[0],np.concatenate(r_value,axis=1)[0],np.concatenate(l_rank,axis=1)[0],np.concatenate(l_value,axis=1)[0]
def test(self, Lvec,Rvec):
results = self.CSLS_cal(Lvec,Rvec)
def cal(results):
hits1,hits5,hits10,mrr = 0,0,0,0
for x in results[:,1]:
if x < 1:
hits1 += 1
if x < 5:
hits5 += 1
if x < 10:
hits10 += 1
mrr += 1/(x + 1)
return hits1,hits5,hits10,mrr
hits1,hits5,hits10,mrr = cal(results)
print("Hits@1: ",hits1/len(Lvec)," ","Hits@5: ",hits5/len(Lvec)," ","Hits@10: ",hits10/len(Lvec)," ","MRR: ",mrr/len(Lvec))
return results