|
1 | 1 | {
|
2 | 2 | "cells": [
|
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "<h1 style=\"color:green\" align='center'>Numpy tutorial: iterate numpy array using nditer</h1>" |
| 8 | + ] |
| 9 | + }, |
3 | 10 | {
|
4 | 11 | "cell_type": "code",
|
5 |
| - "execution_count": 1, |
| 12 | + "execution_count": 27, |
6 | 13 | "metadata": {
|
7 | 14 | "collapsed": true
|
8 | 15 | },
|
|
13 | 20 | },
|
14 | 21 | {
|
15 | 22 | "cell_type": "code",
|
16 |
| - "execution_count": 26, |
17 |
| - "metadata": {}, |
| 23 | + "execution_count": 28, |
| 24 | + "metadata": { |
| 25 | + "scrolled": true |
| 26 | + }, |
18 | 27 | "outputs": [
|
19 | 28 | {
|
20 | 29 | "data": {
|
|
24 | 33 | " [ 8, 9, 10, 11]])"
|
25 | 34 | ]
|
26 | 35 | },
|
27 |
| - "execution_count": 26, |
| 36 | + "execution_count": 28, |
28 | 37 | "metadata": {},
|
29 | 38 | "output_type": "execute_result"
|
30 | 39 | }
|
|
38 | 47 | "cell_type": "markdown",
|
39 | 48 | "metadata": {},
|
40 | 49 | "source": [
|
41 |
| - "<h2 style=\"color:purple\">C style ordering</h2>" |
| 50 | + "<h3 style=\"color:purple\">Using normal for loop iteration</h3>" |
42 | 51 | ]
|
43 | 52 | },
|
44 | 53 | {
|
45 | 54 | "cell_type": "code",
|
46 |
| - "execution_count": 27, |
| 55 | + "execution_count": 29, |
| 56 | + "metadata": { |
| 57 | + "scrolled": false |
| 58 | + }, |
| 59 | + "outputs": [ |
| 60 | + { |
| 61 | + "name": "stdout", |
| 62 | + "output_type": "stream", |
| 63 | + "text": [ |
| 64 | + "0\n", |
| 65 | + "1\n", |
| 66 | + "2\n", |
| 67 | + "3\n", |
| 68 | + "4\n", |
| 69 | + "5\n", |
| 70 | + "6\n", |
| 71 | + "7\n", |
| 72 | + "8\n", |
| 73 | + "9\n", |
| 74 | + "10\n", |
| 75 | + "11\n" |
| 76 | + ] |
| 77 | + } |
| 78 | + ], |
| 79 | + "source": [ |
| 80 | + "for row in a:\n", |
| 81 | + " for cell in row:\n", |
| 82 | + " print(cell)" |
| 83 | + ] |
| 84 | + }, |
| 85 | + { |
| 86 | + "cell_type": "markdown", |
| 87 | + "metadata": {}, |
| 88 | + "source": [ |
| 89 | + "<h3 style=\"color:purple\">For loop with flatten</h3>" |
| 90 | + ] |
| 91 | + }, |
| 92 | + { |
| 93 | + "cell_type": "code", |
| 94 | + "execution_count": 30, |
| 95 | + "metadata": {}, |
| 96 | + "outputs": [ |
| 97 | + { |
| 98 | + "name": "stdout", |
| 99 | + "output_type": "stream", |
| 100 | + "text": [ |
| 101 | + "0\n", |
| 102 | + "1\n", |
| 103 | + "2\n", |
| 104 | + "3\n", |
| 105 | + "4\n", |
| 106 | + "5\n", |
| 107 | + "6\n", |
| 108 | + "7\n", |
| 109 | + "8\n", |
| 110 | + "9\n", |
| 111 | + "10\n", |
| 112 | + "11\n" |
| 113 | + ] |
| 114 | + } |
| 115 | + ], |
| 116 | + "source": [ |
| 117 | + "for cell in a.flatten():\n", |
| 118 | + " print(cell)" |
| 119 | + ] |
| 120 | + }, |
| 121 | + { |
| 122 | + "cell_type": "markdown", |
| 123 | + "metadata": {}, |
| 124 | + "source": [ |
| 125 | + "<h1 style=\"color:blue\" align=\"center\">nditer</h1>" |
| 126 | + ] |
| 127 | + }, |
| 128 | + { |
| 129 | + "cell_type": "markdown", |
| 130 | + "metadata": {}, |
| 131 | + "source": [ |
| 132 | + "<h3 style=\"color:purple\">C style ordering</h3>" |
| 133 | + ] |
| 134 | + }, |
| 135 | + { |
| 136 | + "cell_type": "code", |
| 137 | + "execution_count": 31, |
47 | 138 | "metadata": {
|
48 | 139 | "scrolled": true
|
49 | 140 | },
|
|
81 | 172 | },
|
82 | 173 | {
|
83 | 174 | "cell_type": "code",
|
84 |
| - "execution_count": 28, |
| 175 | + "execution_count": 32, |
85 | 176 | "metadata": {
|
86 |
| - "scrolled": true |
| 177 | + "scrolled": false |
87 | 178 | },
|
88 | 179 | "outputs": [
|
89 | 180 | {
|
|
114 | 205 | "cell_type": "markdown",
|
115 | 206 | "metadata": {},
|
116 | 207 | "source": [
|
117 |
| - "<h2 style=\"color:purple\">Modify array values while iterating</h2>" |
| 208 | + "<h3 style=\"color:purple\">external_loop</h3>" |
118 | 209 | ]
|
119 | 210 | },
|
120 | 211 | {
|
121 | 212 | "cell_type": "code",
|
122 | 213 | "execution_count": 33,
|
| 214 | + "metadata": { |
| 215 | + "scrolled": false |
| 216 | + }, |
| 217 | + "outputs": [ |
| 218 | + { |
| 219 | + "name": "stdout", |
| 220 | + "output_type": "stream", |
| 221 | + "text": [ |
| 222 | + "[0 4 8]\n", |
| 223 | + "[1 5 9]\n", |
| 224 | + "[ 2 6 10]\n", |
| 225 | + "[ 3 7 11]\n" |
| 226 | + ] |
| 227 | + } |
| 228 | + ], |
| 229 | + "source": [ |
| 230 | + "for x in np.nditer(a, flags=['external_loop'],order='F'):\n", |
| 231 | + " print(x)" |
| 232 | + ] |
| 233 | + }, |
| 234 | + { |
| 235 | + "cell_type": "markdown", |
| 236 | + "metadata": {}, |
| 237 | + "source": [ |
| 238 | + "<h2 style=\"color:purple\">Modify array values while iterating</h2>" |
| 239 | + ] |
| 240 | + }, |
| 241 | + { |
| 242 | + "cell_type": "code", |
| 243 | + "execution_count": 34, |
123 | 244 | "metadata": {
|
124 | 245 | "collapsed": true
|
125 | 246 | },
|
126 | 247 | "outputs": [],
|
127 | 248 | "source": [
|
128 | 249 | "for x in np.nditer(a, op_flags=['readwrite']):\n",
|
129 |
| - " x[...] = x + 1" |
| 250 | + " x[...] = x * x" |
130 | 251 | ]
|
131 | 252 | },
|
132 | 253 | {
|
133 | 254 | "cell_type": "code",
|
134 |
| - "execution_count": 34, |
| 255 | + "execution_count": 35, |
135 | 256 | "metadata": {
|
136 | 257 | "scrolled": true
|
137 | 258 | },
|
138 | 259 | "outputs": [
|
139 | 260 | {
|
140 | 261 | "data": {
|
141 | 262 | "text/plain": [
|
142 |
| - "array([[ 1, 2, 3, 4],\n", |
143 |
| - " [ 5, 6, 7, 8],\n", |
144 |
| - " [ 9, 10, 11, 12]])" |
| 263 | + "array([[ 0, 1, 4, 9],\n", |
| 264 | + " [ 16, 25, 36, 49],\n", |
| 265 | + " [ 64, 81, 100, 121]])" |
145 | 266 | ]
|
146 | 267 | },
|
147 |
| - "execution_count": 34, |
| 268 | + "execution_count": 35, |
148 | 269 | "metadata": {},
|
149 | 270 | "output_type": "execute_result"
|
150 | 271 | }
|
|
162 | 283 | },
|
163 | 284 | {
|
164 | 285 | "cell_type": "code",
|
165 |
| - "execution_count": 35, |
| 286 | + "execution_count": 36, |
166 | 287 | "metadata": {},
|
167 | 288 | "outputs": [
|
168 | 289 | {
|
169 | 290 | "data": {
|
170 | 291 | "text/plain": [
|
171 |
| - "array([[ 0, 1, 2, 3],\n", |
172 |
| - " [ 4, 5, 6, 7],\n", |
173 |
| - " [ 8, 9, 10, 11]])" |
| 292 | + "array([[ 3],\n", |
| 293 | + " [ 7],\n", |
| 294 | + " [11]])" |
174 | 295 | ]
|
175 | 296 | },
|
176 |
| - "execution_count": 35, |
| 297 | + "execution_count": 36, |
177 | 298 | "metadata": {},
|
178 | 299 | "output_type": "execute_result"
|
179 | 300 | }
|
180 | 301 | ],
|
181 | 302 | "source": [
|
182 |
| - "b = np.arange(12).reshape(3,4)\n", |
| 303 | + "b = np.arange(3, 15, 4).reshape(3,1)\n", |
183 | 304 | "b"
|
184 | 305 | ]
|
| 306 | + }, |
| 307 | + { |
| 308 | + "cell_type": "code", |
| 309 | + "execution_count": 37, |
| 310 | + "metadata": {}, |
| 311 | + "outputs": [ |
| 312 | + { |
| 313 | + "name": "stdout", |
| 314 | + "output_type": "stream", |
| 315 | + "text": [ |
| 316 | + "0 3\n", |
| 317 | + "1 3\n", |
| 318 | + "4 3\n", |
| 319 | + "9 3\n", |
| 320 | + "16 7\n", |
| 321 | + "25 7\n", |
| 322 | + "36 7\n", |
| 323 | + "49 7\n", |
| 324 | + "64 11\n", |
| 325 | + "81 11\n", |
| 326 | + "100 11\n", |
| 327 | + "121 11\n" |
| 328 | + ] |
| 329 | + } |
| 330 | + ], |
| 331 | + "source": [ |
| 332 | + "for x, y in np.nditer([a,b]):\n", |
| 333 | + " print (x,y)" |
| 334 | + ] |
185 | 335 | }
|
186 | 336 | ],
|
187 | 337 | "metadata": {
|
|
200 | 350 | "name": "python",
|
201 | 351 | "nbconvert_exporter": "python",
|
202 | 352 | "pygments_lexer": "ipython3",
|
203 |
| - "version": "3.6.1" |
| 353 | + "version": "3.6.3" |
204 | 354 | }
|
205 | 355 | },
|
206 | 356 | "nbformat": 4,
|
|
0 commit comments