-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtpot_classifier_pipeline.py
27 lines (23 loc) · 1.09 KB
/
tpot_classifier_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import numpy as np
import pandas as pd
from sklearn.decomposition import FastICA
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.impute import SimpleImputer
# NOTE: Make sure that the outcome column is labeled 'target' in the data file
tpot_data = pd.read_csv('PATH/TO/DATA/FILE', sep='COLUMN_SEPARATOR', dtype=np.float64)
features = tpot_data.drop('target', axis=1)
training_features, testing_features, training_target, testing_target = \
train_test_split(features, tpot_data['target'], random_state=None)
imputer = SimpleImputer(strategy="median")
imputer.fit(training_features)
training_features = imputer.transform(training_features)
testing_features = imputer.transform(testing_features)
# Average CV score on the training set was: 0.48485034992030285
exported_pipeline = make_pipeline(
FastICA(tol=0.8),
LogisticRegression(C=15.0, dual=False, penalty="l2")
)
exported_pipeline.fit(training_features, training_target)
results = exported_pipeline.predict(testing_features)