-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
222 lines (178 loc) · 7.08 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# -*- coding: utf-8 -*-
"""
Description: Train the DPL Model
Author: wondervictor
"""
import os
import torch
import random
import argparse
import numpy as np
import torch.cuda
import torch.nn as nn
import torch.utils.data
import torch.optim as optim
from torch.autograd import Variable
import utils
import models.dpl as model
import models.layers as layers
from datasets import pascal_voc
from datasets import utils as data_utils
parser = argparse.ArgumentParser()
parser.add_argument('--imageset', type=str, default='train', help='training image set [train, trainval]')
parser.add_argument('--batch_size', type=int, default=2, help='training batch size')
parser.add_argument('--basemodel', type=str, default='vgg', help='base cnn model:[vgg, resnet34, resnet50]')
parser.add_argument('--cuda', action='store_true', help='use GPU to train')
parser.add_argument('--dataset', type=str, default='VOC2012', help='training dataset:[VOC2012, VOC2007, COCO]')
parser.add_argument('--epoch', type=int, default=100, help='training epoches')
parser.add_argument('--lr', type=float, default=0.001, help='base learning rate')
parser.add_argument('--data_dir', type=str, required=True, help='parameters storage')
parser.add_argument('--log_interval', type=int, default=20, help='log messages interval')
parser.add_argument('--val_interval', type=int, default=5, help='validation interval')
parser.add_argument('--save_interval', type=int, default=5, help='save model interval')
parser.add_argument('--name', type=str, required=True, help='expriment name')
parser.add_argument('--img_size', type=int, default=224, help='image size')
parser.add_argument('--num_class', type=int, default=20, help='label classes')
parser.add_argument('--proposal', type=str, default='selective_search', help='proposal:[selective_search, dense_box]')
parser.add_argument('--resume', action='store_true', help='use saved parameters to resume')
parser.add_argument('--optimize_all', action='store_true', help='Optimize all parameters including VGG/ResNet')
parser.add_argument('--param', type=str, default='', help='Initialize with params')
opt = parser.parse_args()
print(opt)
# fix the random seed
random_seed = np.random.randint(0, 1000000)
random.seed(random_seed)
np.random.seed(random_seed)
torch.manual_seed(random_seed)
if not os.path.exists('output/'):
os.mkdir('output/')
expr_dir = 'output/{}/'.format(opt.name)
if not os.path.exists(expr_dir):
os.mkdir(expr_dir)
if torch.cuda.is_available() and not opt.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
train_dataset = pascal_voc.PASCALVOC(
data_dir=opt.data_dir,
imageset=opt.imageset,
roi_path='./data/',
roi_type=opt.proposal,
devkit='./devkit/'
)
val_dataset = pascal_voc.PASCALVOC(
data_dir=opt.data_dir,
imageset='val',
roi_path='./data/',
roi_type=opt.proposal,
devkit='./devkit/'
)
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=opt.batch_size,
shuffle=True,
collate_fn=data_utils.collate_fn,
num_workers=2
)
test_loader = torch.utils.data.DataLoader(
dataset=val_dataset,
batch_size=1,
shuffle=False,
collate_fn=data_utils.collate_fn,
num_workers=2
)
def adjust_lr(_optimizer, _epoch):
lr = opt.lr * 0.5 * (_epoch/5)
for param_group in _optimizer.param_groups:
lr = param_group['lr']
param_group['lr'] = lr * 0.5
log_dir = expr_dir+'log/'
if not os.path.exists(log_dir):
os.mkdir(log_dir)
param_dir = expr_dir+'param/'
if not os.path.exists(param_dir):
os.mkdir(param_dir)
criterion = layers.MultiSigmoidCrossEntropyLoss()
if opt.optimize_all:
dpl = model.DPL(use_cuda=opt.cuda, enable_base_grad=True, base=opt.basemodel, num_classes=opt.num_class)
net_params = dpl.parameters()
else:
dpl = model.DPL(use_cuda=opt.cuda, enable_base_grad=False, base=opt.basemodel, num_classes=opt.num_class)
net_params = dpl.head_network.parameters()
optimizer = optim.Adam(params=net_params, lr=opt.lr, weight_decay=1e-4)
dpl.train()
# dpl = nn.DataParallel(dpl, device_ids=(0, 1))
logger = utils.Logger(stdio=True, log_file=log_dir+"training.log")
images = Variable(torch.FloatTensor(opt.batch_size, 3, opt.img_size, opt.img_size))
labels = Variable(torch.FloatTensor(opt.batch_size, opt.num_class))
if opt.cuda:
criterion = criterion.cuda()
dpl = dpl.cuda()
images = images.cuda()
labels = labels.cuda()
if opt.resume and os.path.exists("{}resume.pth".format(param_dir)):
dpl.load_state_dict(torch.load("{}resume.pth".format(param_dir)))
print("Load params from resume data")
elif len(opt.param) > 0:
dpl.load_state_dict(torch.load(opt.param))
print("Load params from param: %s" % opt.param)
print(dpl)
print("---------- DPL Model Init Finished -----------")
averager = utils.Averager()
def load_data(v, data):
v.data.resize_(data.size()).copy_(data)
def test(net, criterion, output_dir):
# output_dir = 'devkit/results/VOC2012/Main/comp2_cls_val_xxxx.txt'
net.eval()
test_iter = iter(test_loader)
test_averager = utils.Averager()
if not os.path.exists(output_dir):
os.makedirs(output_dir)
i = 0
while i < len(train_loader):
img, lbl, box = train_iter.next()
load_data(images, img)
load_data(labels, lbl)
boxes = Variable(torch.FloatTensor(box)).cuda()
output = net(images, boxes).squeeze(0)
loss = criterion(output, labels)
test_averager.add(loss)
for m in xrange(opt.num_class):
cls_file = os.path.join(output_dir, 'cls_val_' + val_dataset.classes[m] + '.txt')
with open(cls_file, 'a') as f:
f.write(val_dataset.image_index[i] + ' ' + str(output[m]) + '\n')
print 'im_cls: {:d}/{:d}: {}'.format(i + 1, len(train_loader), val_dataset.image_index[i])
val_dataset.do_python_eval(output_dir)
def train_batch(net, data, criterion, optimizer):
img, lbl, box, shapes = data
load_data(images, img)
load_data(labels, lbl)
boxes = Variable(torch.FloatTensor(box)).cuda()
shapes = Variable(torch.FloatTensor(shapes)).cuda()
cls_1, cls_2, _ = net(images, shapes, boxes)
loss1 = criterion(cls_1, labels)
loss2 = criterion(cls_2, labels)
loss = loss1 + loss2
optimizer.zero_grad()
loss.backward()
optimizer.step()
return loss
logger.log('starting to train')
iter_steps = 0
for epoch in xrange(opt.epoch):
train_iter = iter(train_loader)
i = 0
while i < len(train_loader):
dpl.train()
dpl.freeze_bn()
data = train_iter.next()
_loss = train_batch(dpl, data, criterion, optimizer=optimizer)
averager.add(_loss)
iter_steps += 1
i += 1
if (iter_steps+1) % opt.log_interval == 0:
logger.log('[%d/%d][%d/%d] Loss: %f' % (epoch, opt.epoch, i, len(train_loader), averager.val()))
averager.reset()
if (epoch+1) % opt.val_interval == 0:
pass
# if (epoch+1) % opt.save_interval == 0:
torch.save(dpl.state_dict(), os.path.join(param_dir, 'epoch_{}.pth'.format(epoch)))
torch.save(dpl.state_dict(), os.path.join(param_dir, 'resume.pth'))