-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
218 lines (173 loc) · 8.67 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
import argparse
import pathlib
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data
import torchvision
import torchvision.transforms as transforms
import pretrainedmodels
from pytorchcv.model_provider import get_model as ptcv_get_model
from tqdm import tqdm
from utils import AverageMeter
from models.attack_generator import AttackGenerator, weights_init_normal
import gradcam
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
parser = argparse.ArgumentParser(description='Training for Attentive Diversity Attack')
parser.add_argument('--surrogate', type=str, help='target model')
parser.add_argument('--target_layer', type=str,
help='target layer : '
'ex) Mixed_7c for inc-v3,'
' features.21 for inc-v4,'
' conv2d_7b for incres-v2,'
' features.stage4.unit3 for res-v2')
parser.add_argument('--epoch', default=100, type=int, help='total number of epochs')
parser.add_argument('--batch_size', default=4, type=int, help='batch size')
parser.add_argument('--lr', default=0.0001, type=float, help='learning rate')
parser.add_argument('--lam_div', default=1000., type=float, help='weight for div_loss')
parser.add_argument('--lam_attn', default=10., type=float, help='weight for attn_loss')
parser.add_argument('--z_dim', default=16, type=int, help='dimension of the latent vector')
parser.add_argument('--epsilon', default=16., type=float, help='perturbation constraint')
parser.add_argument('--save_dir', default='./weights', type=str, help='directory for saving model weights')
parser.add_argument('--save_name', default='default', type=str, help='name of the saved model weights')
parser.add_argument('--device', default=0, type=int, help='GPU device id')
args = parser.parse_args()
device = torch.device("cuda:{}".format(args.device) if (torch.cuda.is_available()) else "cpu")
if 'inception' in args.surrogate or 'resnet_v2' in args.surrogate:
mean, stddev = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5]
else:
mean, stddev = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
transform = transforms.Compose([
transforms.Resize(299),
transforms.CenterCrop(299),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=stddev)
])
dataset = torchvision.datasets.ImageFolder('./data/imagenet_subset/train', transform=transform)
dataloader = torch.utils.data.DataLoader(
dataset, batch_size=args.batch_size, shuffle=True)
testset = torchvision.datasets.folder.ImageFolder('./data/imagenet_subset/val', transform=transform)
testloader = torch.utils.data.DataLoader(
testset, batch_size=args.batch_size, shuffle=False)
target_models = {
"resnet_v2": ptcv_get_model("preresnet152", pretrained=True),
"inception_v3": pretrainedmodels.__dict__['inceptionv3'](num_classes=1000, pretrained='imagenet'),
"inception_v4": pretrainedmodels.__dict__['inceptionv4'](num_classes=1000, pretrained='imagenet'),
"inception_resnet_v2": pretrainedmodels.__dict__['inceptionresnetv2'](num_classes=1000, pretrained='imagenet'),
"vgg_16": torchvision.models.vgg16(pretrained=True)
}
class_model = target_models[args.surrogate]
if args.surrogate == 'inception_v3':
class_model.aux_logits = False
if args.surrogate == 'resnet_v2':
class_model.features.final_pool = torch.nn.AdaptiveAvgPool2d(output_size=(1, 1))
class_model = class_model.to(device)
class_model.eval()
target_layer = [args.target_layer]
G = AttackGenerator(base_channel_dim=64, input_img_channel=3, z_channel=args.z_dim, deeper_layer=False,
num_class=1000, last_dim=3)
G = G.to(device)
G.apply(weights_init_normal)
criterion_gcam = nn.MSELoss(reduction='mean')
criterion_ce = nn.CrossEntropyLoss()
G_optimizer = optim.Adam(G.parameters(), lr=args.lr, betas=(0.5, 0.999), weight_decay=0.00001)
def normalize_and_scale_imagenet(delta_im, epsilon):
for ci in range(3):
mag_in_scaled = epsilon / stddev[ci]
delta_im[:, ci] = delta_im[:, ci].clone().clamp(-mag_in_scaled, mag_in_scaled)
return delta_im
def renormalization(X, X_pert, epsilon):
eps_added = normalize_and_scale_imagenet(X_pert - X.clone(), epsilon) + X.clone()
for i in range(3):
min_clamp = (0 - mean[i]) / stddev[i]
max_clamp = (1 - mean[i]) / stddev[i]
eps_added[:, i] = eps_added[:, i].clone().clamp(min_clamp, max_clamp)
return eps_added
def test():
G.eval()
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
image, label = data
image, label = image.to(device), label.to(device)
double_image = torch.cat((image, image), dim=0)
double_label = torch.cat((label, label), dim=0)
z = torch.FloatTensor(image.shape[0] * 2, args.z_dim).normal_().to(device)
adv_noise = G(double_image, z)
double_adv_image = double_image + adv_noise
double_adv_image = renormalization(double_image, double_adv_image, args.epsilon / 255)
output = class_model(double_adv_image)
_, predicted = torch.max(output.data, 1)
total += double_label.size(0)
correct += (predicted == double_label).sum().item()
avg_acc = 100 * float(correct) / total
return avg_acc
def train(epoch):
G.train()
#############################################################################################################
# Training
#############################################################################################################
attn_losses = AverageMeter()
div_losses = AverageMeter()
cls_losses = AverageMeter()
with tqdm(total=(len(dataset) - len(dataset) % args.batch_size)) as _tqdm:
_tqdm.set_description('Epoch: {}/{}'.format(epoch, args.epoch))
for data in dataloader:
image, label = data
image, label = image.to(device), label.to(device)
double_image = torch.cat((image, image), dim=0)
double_label = torch.cat((label, label), dim=0)
z = torch.FloatTensor(image.shape[0] * 2, args.z_dim).normal_().to(device)
adv_noise = G(double_image, z)
double_adv_image = double_image + adv_noise
double_adv_image = renormalization(double_image, double_adv_image, args.epsilon / 255)
adv_output = class_model(double_adv_image)
loss = 0.
cls_loss = criterion_ce(adv_output, double_label)
loss += -1 * cls_loss
ori_gcam = gradcam.GradCAM(model=class_model, candidate_layers=target_layer)
index, output = ori_gcam.forward(double_image)
ori_gcam.backward(ids=index, output=output)
ori_attn = ori_gcam.generate(target_layer=args.target_layer)
adv_gcam = gradcam.GradCAM(model=class_model, candidate_layers=target_layer)
_, adv_output = adv_gcam.forward(double_adv_image)
adv_gcam.backward(ids=index, output=adv_output)
adv_attn = adv_gcam.generate(target_layer=args.target_layer)
attn_loss = 0.
for a_attn, o_attn in zip(adv_attn, ori_attn):
attn_loss += criterion_gcam(a_attn, o_attn)
attn_loss /= len(adv_attn)
loss += -1 * args.lam_attn * attn_loss
div_loss = 0.
for a_attn in adv_attn:
numerator = torch.mean(torch.abs(a_attn[:image.shape[0]] - a_attn[image.shape[0]:]),
dim=[_ for _ in range(1, len(a_attn.shape))])
denominator = torch.mean(torch.abs(z[:image.shape[0]] - z[image.shape[0]:]),
dim=[_ for _ in range(1, len(z.shape))])
div_loss += torch.mean(numerator / (denominator + 1e-8))
div_loss /= len(adv_attn)
loss += -1 * args.lam_div * div_loss
loss.backward()
G_optimizer.step()
ori_gcam.remove_hook()
ori_gcam.clear()
adv_gcam.remove_hook()
adv_gcam.clear()
cls_losses.update(cls_loss.data, len(image) * 2)
attn_losses.update(attn_loss.data, len(image))
div_losses.update(div_loss.data, len(image))
_tqdm.set_postfix(
attn_loss='{:.4f}'.format(attn_losses.avg),
cls_loss='{:.4f}'.format(cls_losses.avg),
div_loss='{:.4f}'.format(div_losses.avg),
)
_tqdm.update(args.batch_size)
if __name__ == '__main__':
for epoch in range(args.epoch):
train(epoch=epoch)
avg_acc = test()
print("AVG ACC:{}".format(avg_acc))
torch.save(G.state_dict(), os.path.join(args.save_dir, args.save_name + '.pth'))