-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathRDFCN_ISU_Shuo_UADETRAC_end2end.yaml
152 lines (150 loc) · 2.79 KB
/
RDFCN_ISU_Shuo_UADETRAC_end2end.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
---
MXNET_VERSION: "mxnet"
output_path: "./output/rfcn_dcn_Shuo_UADTRAC/"
symbol: resnet_v1_101_rfcn_dcn
gpus: '2'
CLASS_AGNOSTIC: true
SCALES:
- 600
- 1000
default:
frequent: 100
kvstore: device
network:
pretrained: "./model/pretrained_model/resnet_v1_101"
pretrained_epoch: 0
PIXEL_MEANS:
- 103.06
- 115.90
- 123.15
IMAGE_STRIDE: 0
RCNN_FEAT_STRIDE: 16
RPN_FEAT_STRIDE: 16
FIXED_PARAMS:
- conv1
- bn_conv1
- res2
- bn2
- gamma
- beta
FIXED_PARAMS_SHARED:
- conv1
- bn_conv1
- res2
- bn2
- res3
- bn3
- res4
- bn4
- gamma
- beta
ANCHOR_RATIOS:
- 0.5
- 1
- 2
ANCHOR_SCALES:
- 8
- 16
- 32
NUM_ANCHORS: 9
dataset:
NUM_CLASSES: 2
dataset: UADETRAC
dataset_path: "./data/data_Shuo/"
image_set: trainlist_full
root_path: "./data"
test_image_set: testlist_det_experienced
proposal: rpn
TRAIN:
lr: 0.0005
lr_step: '4.83'
warmup: true
warmup_lr: 0.00005
# typically we will use 4000 warmup step for single GPU on VOC
warmup_step: 4000
begin_epoch: 0
end_epoch: 5
model_prefix: 'rfcn_UADTRAC'
# whether resume training
RESUME: false
# whether flip image
FLIP: false
# whether shuffle image
SHUFFLE: true
# whether use OHEM
ENABLE_OHEM: true
# size of images for each device, 2 for rcnn, 1 for rpn and e2e
BATCH_IMAGES: 1
# e2e changes behavior of anchor loader and metric
END2END: true
# group images with similar aspect ratio
ASPECT_GROUPING: true
# R-CNN
# rcnn rois batch size
BATCH_ROIS: -1
BATCH_ROIS_OHEM: 128
# rcnn rois sampling params
FG_FRACTION: 0.25
FG_THRESH: 0.5
BG_THRESH_HI: 0.5
BG_THRESH_LO: 0.0
# rcnn bounding box regression params
BBOX_REGRESSION_THRESH: 0.5
BBOX_WEIGHTS:
- 1.0
- 1.0
- 1.0
- 1.0
# RPN anchor loader
# rpn anchors batch size
RPN_BATCH_SIZE: 256
# rpn anchors sampling params
RPN_FG_FRACTION: 0.5
RPN_POSITIVE_OVERLAP: 0.7
RPN_NEGATIVE_OVERLAP: 0.3
RPN_CLOBBER_POSITIVES: false
# rpn bounding box regression params
RPN_BBOX_WEIGHTS:
- 1.0
- 1.0
- 1.0
- 1.0
RPN_POSITIVE_WEIGHT: -1.0
# used for end2end training
# RPN proposal
CXX_PROPOSAL: false
RPN_NMS_THRESH: 0.7
RPN_PRE_NMS_TOP_N: 6000
RPN_POST_NMS_TOP_N: 300
RPN_MIN_SIZE: 0
# approximate bounding box regression
BBOX_NORMALIZATION_PRECOMPUTED: true
BBOX_MEANS:
- 0.0
- 0.0
- 0.0
- 0.0
BBOX_STDS:
- 0.1
- 0.1
- 0.2
- 0.2
TEST:
# use rpn to generate proposal
HAS_RPN: true
# size of images for each device
BATCH_IMAGES: 1
# RPN proposal
CXX_PROPOSAL: false
RPN_NMS_THRESH: 0.7
RPN_PRE_NMS_TOP_N: 6000
RPN_POST_NMS_TOP_N: 300
RPN_MIN_SIZE: 0
# RPN generate proposal
PROPOSAL_NMS_THRESH: 0.7
PROPOSAL_PRE_NMS_TOP_N: 20000
PROPOSAL_POST_NMS_TOP_N: 2000
PROPOSAL_MIN_SIZE: 0
# RCNN nms
NMS: 0.3
test_epoch: 5