-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
226 lines (190 loc) · 7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import os
import logging
import torch
import random
import numpy as np
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=":f"):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})"
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
logging.info("\t".join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = "{:" + str(num_digits) + "d}"
return "[" + fmt + "/" + fmt.format(num_batches) + "]"
def set_logger(log_path):
"""Set the logger to log info in terminal and file `log_path`.
In general, it is useful to have a logger so that every output to the terminal is saved
in a permanent file. Here we save it to `model_dir/train.log`.
Example:
```
logging.info("Starting training...")
```
Args:
log_path: (string) where to log
"""
logger = logging.getLogger()
logger.setLevel(logging.INFO)
if not logger.handlers:
# Logging to a file
file_handler = logging.FileHandler(log_path)
file_handler.setFormatter(
logging.Formatter("%(asctime)s:%(levelname)s: %(message)s")
)
logger.addHandler(file_handler)
# Logging to console
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(logging.Formatter("%(message)s"))
logger.addHandler(stream_handler)
def relative_to_abs(rel_traj, start_pos):
"""
Inputs:
- rel_traj: pytorch tensor of shape (seq_len, batch, 2)
- start_pos: pytorch tensor of shape (batch, 2)
Outputs:
- abs_traj: pytorch tensor of shape (seq_len, batch, 2)
"""
# batch, seq_len, 2
if len(rel_traj.shape) == 3:
rel_traj = rel_traj.permute(1, 0, 2)
displacement = torch.cumsum(rel_traj, dim=1)
start_pos = torch.unsqueeze(start_pos, dim=1)
abs_traj = displacement + start_pos
return abs_traj.permute(1, 0, 2)
elif len(rel_traj.shape) == 4:
abs_traj = []
start_pos = torch.unsqueeze(start_pos, dim=1)
for i in range(rel_traj.shape[0]):
rel_traj_ = rel_traj[i].permute(1, 0, 2)
displacement = torch.cumsum(rel_traj_, dim=1)
abs_traj_ = displacement + start_pos
abs_traj.append(abs_traj_.permute(1, 0, 2))
return torch.stack(abs_traj)
def get_dset_path(dset_name, dset_type):
_dir = os.path.dirname(__file__)
# _dir = _dir.split("/")[:-1]
# _dir = "/".join(_dir)
return os.path.join(_dir, "datasets", dset_name, dset_type)
def int_tuple(s):
return tuple(int(i) for i in s.split(","))
def l2_loss(pred_traj, pred_traj_gt, loss_mask, random=0, mode="average"):
"""
Input:
- pred_traj: Tensor of shape (seq_len, batch, 2). Predicted trajectory.
- pred_traj_gt: Tensor of shape (seq_len, batch, 2). Groud truth
predictions.
- loss_mask: Tensor of shape (batch, seq_len)
- mode: Can be one of sum, average, raw
Output:
- loss: l2 loss depending on mode
"""
seq_len, batch, _ = pred_traj.size()
# equation below , the first part do noing, can be delete
loss = (pred_traj_gt.permute(1, 0, 2) - pred_traj.permute(1, 0, 2)) ** 2
if mode == "sum":
return torch.sum(loss)
elif mode == "average":
return torch.sum(loss) / torch.numel(loss_mask.data)
elif mode == "raw":
return loss.sum(dim=2).sum(dim=1)
def displacement_error(pred_traj, pred_traj_gt, consider_ped=None, mode='sum'):
"""
Input:
- pred_traj: Tensor of shape (seq_len, batch, 2). Predicted trajectory.
- pred_traj_gt: Tensor of shape (seq_len, batch, 2). Ground truth
predictions.
- consider_ped: Tensor of shape (batch)
- mode: Can be one of sum, raw
Output:
- loss: gives the eculidian displacement error
"""
seq_len, _, _ = pred_traj.size()
loss = pred_traj_gt.permute(1, 0, 2) - pred_traj.permute(1, 0, 2)
loss = loss**2
if consider_ped is not None:
loss = torch.sqrt(loss.sum(dim=2)).sum(dim=1) * consider_ped
else:
loss = torch.sqrt(loss.sum(dim=2)).sum(dim=1)
if mode == 'sum':
return torch.sum(loss)
elif mode == 'raw':
return loss
def final_displacement_error(
pred_pos, pred_pos_gt, consider_ped=None, mode='sum'
):
"""
Input:
- pred_pos: Tensor of shape (batch, 2). Predicted last pos.
- pred_pos_gt: Tensor of shape (seq_len, batch, 2). Groud truth
last pos
- consider_ped: Tensor of shape (batch)
Output:
- loss: gives the eculidian displacement error
"""
loss = pred_pos_gt - pred_pos
loss = loss**2
if consider_ped is not None:
loss = torch.sqrt(loss.sum(dim=1)) * consider_ped
else:
loss = torch.sqrt(loss.sum(dim=1))
if mode == 'raw':
return loss
else:
return torch.sum(loss)
def step_displacement_error(pred_traj, pred_traj_gt, consider_ped=None):
"""
Input:
- pred_traj: Tensor of shape (seq_len, batch, 2). Predicted trajectory.
- pred_traj_gt: Tensor of shape (seq_len, batch, 2). Ground truth
predictions.
- consider_ped: Tensor of shape (batch)
- mode: Can be one of sum, raw
Output:
- loss: gives the eculidian displacement error
"""
seq_len, _, _ = pred_traj.size()
loss = pred_traj_gt.permute(1, 0, 2) - pred_traj.permute(1, 0, 2)
loss = loss**2
if consider_ped is not None:
loss = torch.sqrt(loss.sum(dim=-1)) * consider_ped
else:
loss = torch.sqrt(loss.sum(dim=-1))
# print('loss:', loss.shape)
return loss
def ade_fde_of_samples(predictions, groundtruth, mode="mean"):
loss = predictions - groundtruth
loss = torch.sqrt(torch.sum(loss ** 2, dim=-1))
ade = torch.mean(loss, dim=1)
fde = loss[:, -1, :]
ade_min, _ = torch.min(ade, dim=0)
fde_min, _ = torch.min(fde, dim=0)
if mode == "mean":
ade_min_avg = torch.mean(ade_min)
fde_min_avg = torch.mean(fde_min)
elif mode == "sum":
ade_min_avg = torch.sum(ade_min)
fde_min_avg = torch.sum(fde_min)
return ade_min_avg, fde_min_avg