-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
213 lines (179 loc) · 8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import argparse
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
from model import *
from data.loader import data_loader
from utils import *
parser = argparse.ArgumentParser()
parser.add_argument("--log_dir", default="./", help="Directory containing logging file")
parser.add_argument("--dataset_name", default="eth", type=str)
parser.add_argument("--delim", default="\t")
parser.add_argument("--loader_num_workers", default=0, type=int)
parser.add_argument("--obs_len", default=8, type=int)
parser.add_argument("--pred_len", default=12, type=int)
parser.add_argument("--skip", default=1, type=int)
parser.add_argument("--seed", type=int, default=72, help="Random seed.")
parser.add_argument("--batch_size", default=128, type=int)
parser.add_argument("--num_epochs", default=300, type=int)
parser.add_argument("--best_k", default=20, type=int)
parser.add_argument("--print_every", default=20, type=int)
parser.add_argument("--use_gpu", default=1, type=int)
parser.add_argument("--gpu_num", default="0", type=str)
parser.add_argument("--d_model", default=256, type=int)
parser.add_argument("--n_heads", default=4, type=int)
parser.add_argument("--n_layers", default=1, type=int)
parser.add_argument("--noise_dim", default=64, type=int)
parser.add_argument("--lr", default=1e-3)
parser.add_argument('--start_test', default=10, type=int)
parser.add_argument("--resume", default="", type=str, metavar="PATH", help="path to latest checkpoint (default: none)")
best_ade, best_fde, best_epoch = 100, 100, 0
def main(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_num
logging.info("Initializing train dataset")
train_dset, train_loader = data_loader(args, phase='train')
logging.info("Initializing val dataset")
_, val_loader = data_loader(args, phase='val')
writer = SummaryWriter()
model = MRGTraj(args)
model.cuda()
print(model)
optimizer = optim.SGD(model.parameters(), lr=args.lr)
global best_ade, best_fde, best_epoch
if args.resume:
if os.path.isfile(args.resume):
logging.info("Restoring from checkpoint {}".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint["epoch"]
model.load_state_dict(checkpoint["state_dict"])
logging.info(
"=> loaded checkpoint '{}' (epoch {})".format(
args.resume, checkpoint["epoch"]
)
)
else:
logging.info("=> no checkpoint found at '{}'".format(args.resume))
for epoch in range(args.num_epochs):
train(args, model, train_loader, optimizer, epoch, writer)
if epoch > args.start_test:
ade, fde = validate(args, model, val_loader, epoch, writer)
is_best = ade <= best_ade or fde <= best_fde
best_ade = min(ade, best_ade)
best_fde = min(fde, best_fde)
if is_best:
best_epoch = epoch
save_checkpoint(
{
"epoch": epoch + 1,
"state_dict": model.state_dict(),
"best_ade": best_ade,
"best_fde": best_fde,
"optimizer": optimizer.state_dict(),
},
is_best,
args.checkpoint_dir + f"/best_checkpoint.pth.tar",
)
logging.info(
" ***** Best_ADE {best_ade:.3f} Best_FDE {best_fde:.3f} in Epoch {best_epoch}"
.format(best_ade=best_ade, best_fde=best_fde, best_epoch=best_epoch)
)
writer.close()
def train(args, model, train_loader, optimizer, epoch, writer):
losses = AverageMeter("Loss", ":.6f")
progress = ProgressMeter(
len(train_loader), [losses], prefix="Epoch: [{}]".format(epoch)
)
model.train()
sample_nums = 0
for batch_idx, batch in enumerate(train_loader):
sample_num = batch[-1]
batch = [tensor.cuda() for tensor in batch[:-1]]
(traj_abs,
traj_rel,
batch_mask,
non_linear_ped,
loss_mask,
seq_start_end,
frames
) = batch
optimizer.zero_grad()
loss = torch.zeros(1).to(traj_abs)
past_traj = torch.cat((traj_abs[:args.obs_len], traj_rel[:args.obs_len]), dim=-1)
future_traj = torch.cat((traj_abs[args.obs_len:], traj_rel[args.obs_len:]), dim=-1) # for MRGTraj_sl
pred_traj_fake_rel, mu, log_var = model(
past_traj.transpose(0, 1), future_traj.transpose(0, 1), batch_mask) # for KL(p(z|...), N(0, 1))
l2_loss_sum_rel = l2_loss(
pred_traj_fake_rel, traj_rel[-args.pred_len:], loss_mask=loss_mask[-args.pred_len:])
kld_loss = -0.5 * (1 + log_var - mu.pow(2) - log_var.exp()) # for KL(p(z|...), N(0, 1))
loss += (l2_loss_sum_rel + kld_loss.mean())
losses.update(loss.item(), traj_abs.shape[1])
loss.backward()
optimizer.step()
sample_nums += sample_num
# print(batch_ped_num, ped_num)
if batch_idx % args.print_every == 0:
progress.display(sample_nums)
writer.add_scalar("train_loss", losses.avg, epoch)
def validate(args, model, val_loader, epoch, writer):
ade = AverageMeter("ADE", ":.6f")
fde = AverageMeter("FDE", ":.6f")
progress = ProgressMeter(len(val_loader), [ade, fde], prefix="Test: ")
sample_nums = 0
model.eval()
with torch.no_grad():
for i, batch in enumerate(val_loader):
sample_num = batch[-1]
batch = [tensor.cuda() for tensor in batch[:-1]]
(
traj_abs,
traj_rel,
batch_mask,
non_linear_ped,
loss_mask,
seq_start_end,
frames
) = batch
pred_traj_fakes = []
past_traj = torch.cat((traj_abs[:args.obs_len], traj_rel[:args.obs_len]), dim=-1)
for _ in range(args.best_k):
pred_traj_fake_rel = model.inference(
past_traj.transpose(0, 1), batch_mask)
pred_traj_fake = relative_to_abs(pred_traj_fake_rel, traj_abs[args.obs_len-1])
pred_traj_fakes.append(pred_traj_fake)
pred_traj_fakes = torch.stack(pred_traj_fakes, dim=0)
ade_, fde_ = ade_fde_of_samples(pred_traj_fakes, traj_abs[args.obs_len:])
ade.update(ade_, traj_abs.shape[1])
fde.update(fde_, traj_abs.shape[1])
sample_nums += sample_num
if i % args.print_every == 0:
progress.display(sample_nums)
logging.info(
" * ADE {ade.avg:.3f} FDE {fde.avg:.3f}".format(ade=ade, fde=fde)
)
writer.add_scalar("val_ade", ade.avg, epoch)
return ade.avg, fde.avg
def cal_ade_fde(pred_traj_gt, pred_traj_fake):
ade = displacement_error(pred_traj_fake, pred_traj_gt)
fde = final_displacement_error(pred_traj_fake[-1], pred_traj_gt[-1])
return ade, fde
def init_weights(m):
classname = m.__class__.__name__
if classname.find('Linear') != -1:
nn.init.kaiming_normal_(m.weight)
def save_checkpoint(state, is_best, filename="best_checkpoint.pth.tar"):
if is_best:
torch.save(state, filename)
logging.info("-------------- lower ade ----------------")
if __name__ == "__main__":
args = parser.parse_args()
checkpoint_dir = "./checkpoints/" + args.dataset_name
args.checkpoint_dir = checkpoint_dir
if os.path.exists(checkpoint_dir) is False:
os.makedirs(checkpoint_dir)
train_log = args.dataset_name + "_train.log"
set_logger(os.path.join(args.checkpoint_dir, train_log))
main(args)