-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrialFunctions.py
427 lines (379 loc) · 19.4 KB
/
TrialFunctions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import numpy as np
import numpy.linalg as LA
import GenerateStartingFunctions as GSF
from numpy import random
# GenerateTrialFunctions.py
# This contains a function that takes the starting wavefunctions and creates a trial wavefunction
# 1. Compute a Slater determinant
# 2. Multiply a Jastrow factor TODO
KEprefactor = -GSF.hbar**2 * 0.5/GSF.m_e
q_e2k = GSF.q_e**2 * GSF.k_e
def IonPotentialEnergy(ion_positions,ion_charges):
V_ion=0.0
for i in range(0,len(ion_positions)):
ion_displacements = ion_positions[i+1:] - ion_positions[i] # only calculate distances to ions not already counted
ion_distances = np.sqrt(np.sum(ion_displacements*ion_displacements,axis=1))
#C = np.repeat([ion_charges[i]],len(ion_charges)-i-1,axis=0)
#Z1Z2 = np.outer(C,ion_charges[i+1:]).diagonal() #the diagonal of charge array is the Z1*Z2
Z1Z2= ion_charges[i]*ion_charges[i+1:]
V_ion += np.sum(1.0*Z1Z2/ion_distances) * q_e2k
return V_ion
class WaveFunctionClass:
# An atomic orbital is assigned to each electron.
# Define the atomic wavefunctions
ion_positions = [] # GSF.ion_positions
ion_charges = [] # GSF.ion_charges
N_ion = len(ion_positions)
# TODO remove N_e = 1
N_up = 0
N_down = 0
e_positions = np.zeros((1,3)) # use single electron list for now
#e_pos_up = np.zeros((1,3)) # maybe the up list will be useful later
#e_pos_down = np.zeros((1,3)) # maybe the down list will be useful later
# There is a list of orbitals for the up electrons and another for down
atom_list = []
psi_up = []
psi_down = []
# Jastrow parameters
Aee_same = 0.25 # parallel cusp condition, Drummonds et al
Aee_anti = 0.5 # anti-parallel cusp condition, Drummonds et al
Bee_same = 1.0 # ?
Bee_anti = 1.0 # ?
J = 0
Cen = 0 # -1*ion_charges # Nucleus cusp condition, Drummonds et al
Den = 10.0
# Slater Matrix and determinant
slater_matrix_up = []
slater_det_up = 1.0
inverse_SD_up = []
slater_matrix_down = []
slater_det_down = 1.0
inverse_SD_down = []
h=0.001
def setAtomList(self, atoms):
self.atom_list = atoms
self.ion_positions = np.zeros((len(atoms),3))
self.ion_charges = np.zeros(len(atoms))
for i in range(len(atoms)):
self.ion_positions[i] = atoms[i].i_pos
self.ion_charges[i] = atoms[i].Z
self.Cen = -1 * self.ion_charges
def setUpWavefunctions(self, wfnArray):
self.psi_up = wfnArray
self.N_up = len(wfnArray)
def setDownWavefunctions(self, wfnArray):
self.psi_down = wfnArray
self.N_down = len(wfnArray)
def setNumUp(self, num): # should not be necessary
self.N_up = num
def setNumDown(self, num): # should not be necessary
self.N_down = num
def setAtomicLaplacians(self, lapArray):
self.psi_laplacian = lapArray
def setIonPositions(self, pos):
self.ion_positions = pos
self.N_ion = len(pos)
def setIonCharges(self, charges):
self.ion_charges = charges
self.Cen = -1*charges
def psiDiff(self, fns, rvec):
out_list = np.zeros((2,len(fns))) # 2 --> always two vector , r_old and r_new
for i in range(len(fns)):
out_list[:,i] = fns[i](rvec)
return out_list[1]-out_list[0]
def InitializeElectrons(self):
if self.N_up == 0 and self.N_down == 0:
print 'Error: no electrons to initialize'
return []
else:
# generate array of electron positions, normally distributed from the origin with Bohr radius
n = self.N_up+self.N_down
self.e_positions = np.random.randn(n,3) * GSF.a_B # generate array of electron positions
print 'init e_pos',self.e_positions
# Store displacements and distances
self.e_disp = np.zeros((n,n,3)) # store the displacements in a 3D matrix to make indexing easier
self.e_dist = np.zeros((n,n)) # the electron matrices should only be upper diagonal
self.atom_disp = np.zeros((n,len(self.atom_list),3))
self.atom_dist = np.zeros((n,len(self.atom_list)))
index = 0
for i in range(n):
self.e_disp[i,i+1:] = self.e_positions[i] - self.e_positions[i+1:]
self.e_dist[i,i+1:] = np.sqrt(np.sum(self.e_disp[i,i+1:]**2,1))
self.atom_disp[i] = self.e_positions[i] - self.ion_positions
self.atom_dist[i,:] = np.sqrt(np.sum(self.atom_disp[i,:]**2,1))
#Once the e_position is initialize, the slater matrix and its deteriminant and inverse are all initialized.
self.slater_matrix_up = SlaterMatrix(self.e_positions[0:self.N_up],self.psi_up)
self.slater_matrix_down = SlaterMatrix(self.e_positions[self.N_up:],self.psi_down)
if self.N_up>0:
self.inverse_SD_up = LA.inv(self.slater_matrix_up)
self.slater_det_up = LA.det(self.slater_matrix_up)
if self.N_down>0:
self.inverse_SD_down = LA.inv(self.slater_matrix_down)
self.slater_det_down = LA.det(self.slater_matrix_down)
self.J = self.Jastrow()
return self.e_positions
#def setNup(self, num):
# self.N_up = num
def UpdatePosition(self, i, dr):
# function to update position of one electron and the corresponding distances
rnew = self.e_positions[i] + dr
# update the inverse of determinant matrix
#u = np.zeros(self.N_up+self.N_down)
#u[i]=1.0 # u = [0...1...0] ith electron
if i < self.N_up: # if the electron i to be updated is spin up
u = np.zeros(self.N_up)
u[i]=1.0
v = self.psiDiff(self.psi_up, np.array([self.e_positions[i], rnew])) # v^T for rank one update method, it is simply the different of psi(r_old) and psi(r_new)
ratio = 1.0 + np.dot(v,np.dot(self.inverse_SD_up,u))
# A_inv_new = A_inv - (A_inv*u*v^T*A_inv)/ratio
self.inverse_SD_up += -1.0*np.outer(np.dot(self.inverse_SD_up,u),np.dot(v,self.inverse_SD_up.T))/ratio
self.slater_det_up *= ratio
#print 'SlaterInverse',self.inverse_SD_up
else: # if electron i is spin down
u = np.zeros(self.N_down)
u[i-self.N_up]=1.0
v = self.psiDiff(self.psi_down, np.array([self.e_positions[i], rnew]))
ratio = 1.0 + np.dot(v,np.dot(self.inverse_SD_down,u))
self.inverse_SD_down += -1*np.outer(np.dot(self.inverse_SD_down,u),np.dot(v,self.inverse_SD_down))/ratio
self.slater_det_down *= ratio
Ji_before = self.Jastrow_i(i)
self.e_positions[i] = rnew
self.e_disp[i,i+1:] = rnew - self.e_positions[i+1:]
self.e_dist[i,i+1:] = np.sqrt(np.sum(self.e_disp[i,i+1:]*self.e_disp[i,i+1:],1))
self.e_disp[:i,i] = self.e_positions[:i] - rnew # displacements of earlier electrons
self.e_dist[:i,i] = np.sqrt(np.sum(self.e_disp[:i,i]*self.e_disp[:i,i],1)) # distances of earlier electrons
self.atom_disp[i,:] = rnew - self.ion_positions
self.atom_dist[i,:] = np.sqrt(np.sum(self.atom_disp[i,:]*self.atom_disp[i,:],1))
Ji_after = self.Jastrow_i(i)
deltaJ = Ji_after - Ji_before
self.J += deltaJ
return ratio * np.exp(-2.0*deltaJ) # where does 2.0 come from?
# MANY-BODY WAVEFUNCTION
def PsiManyBody(self):
"""
N_up = self.N_up
if N_up > 0:
slater_matrix_up = SlaterMatrix(self.e_positions[0:N_up], self.psi_up)
slater_det_up = SlaterDeterminant(slater_matrix_up)
else:
slater_det_up = 1
if N_down > 0:e
slater_matrix_down = SlaterMatrix(self.e_positions[N_up:], self.psi_down)
slater_det_down = SlaterDeterminant(slater_matrix_down)
else:
slater_det_down = 1
"""
return self.slater_det_up * self.slater_det_down * np.exp(-self.J)
def QuickPsi(self, i, dr):
rnew = self.e_positions[i] + dr
# This should return an approximate value for psi,
# where ONLY electron i is moved a SMALL amount dr
# This meets finite difference halfway with partial analysis to save time
# TODO write the function
#u = np.zeros(self.N_up+self.N_down)
#u[i]=1.0 # u = [0...1...0] ith electron
if i < self.N_up: # if the electron i to be updated is spin up
u = np.zeros(self.N_up)
u[i]=1.0
v = self.psiDiff(self.psi_up, np.array([self.e_positions[i], rnew])) # v^T for rank one update method, it is simply the different of psi(r_
ratio = 1.0 + np.dot(v,np.dot(self.inverse_SD_up,u))
else: # if electron i is spin down
u = np.zeros(self.N_down)
u[i-self.N_up]=1.0
v = self.psiDiff(self.psi_down, np.array([self.e_positions[i], rnew]))
ratio = 1.0 + np.dot(v,np.dot(self.inverse_SD_down,u))
#print i,'psiratio',ratio,' v',v
return ratio * np.exp(-self.JastrowDiff(i,dr))
def Jastrow(self):
Uen = 0
Uee = 0
N_up = self.N_up
Uen = np.sum(self.Cen * self.atom_dist / (1+self.Den*self.atom_dist))
Uee_up_same = np.sum(self.Aee_same * self.e_dist[:N_up,:N_up] / (1+self.Bee_same * self.e_dist[:N_up,:N_up]))
Uee_down_same = np.sum(self.Aee_same * self.e_dist[N_up:,N_up:] / (1+self.Bee_same * self.e_dist[N_up:,N_up:]))
Uee_anti = np.sum(self.Aee_anti * self.e_dist[:N_up,N_up:] / (1+self.Bee_anti * self.e_dist[:N_up,N_up:]))
Uee = Uee_up_same + Uee_down_same + Uee_anti
"""
for i in range(len(e_positions)):
# Compute ion distances from electron i
# update electron-ion energy term
en_sum = np.sum(self.Cen*self.atom_dist[i]/(1+self.Den*self.atom_dist[i]))
Uen += en_sum
# Compute electron distances from electron i (only further in the list - count each pair once)
e_disp = e_positions[i+1:] - e_positions[i]
e_dist = np.sqrt(np.sum(e_disp*e_disp,axis=1))
if i < N_up: # if this electron is spin up
e_same = e_dist[0:N_up-i-1] # electrons [i+1:N_up]
e_anti = e_dist[N_up-i-1:]
Uee += np.sum(self.Aee_same*e_same/(1+self.Bee_same*e_same))
Uee += np.sum(self.Aee_anti*e_anti/(1+self.Bee_anti*e_anti))
else: # if this electron is spin down
# all the distances are to other down electrons
Uee += np.sum(self.Aee_same*e_dist/(1+self.Bee_same*e_dist))
"""
return np.exp(-(Uee + Uen))
def Jastrow_i(self,i):
# compute Jastrow terms with electron i
# update electron-ion energy term
N_up = self.N_up
Uen = np.sum(self.Cen*self.atom_dist[i]/(1+self.Den*self.atom_dist[i]))
# Compute electron distances from electron i (only further in the list - count each p air once)
Uee = 0
if i < N_up: # if this electron is spin up
e_same = np.hstack((self.e_dist[:i,i], self.e_dist[i,i+1:N_up])) # electrons [i+1:N_up]
e_anti = self.e_dist[i,N_up:]
Uee += np.sum(self.Aee_same*e_same/(1+self.Bee_same*e_same))
Uee += np.sum(self.Aee_anti*e_anti/(1+self.Bee_anti*e_anti))
else: # if this electron is spin down
# all the distances are to other down electrons
Uee += np.sum(self.Aee_same*self.e_dist[i,i+1:]/(1+self.Bee_same*self.e_dist[i,i+1:]))
return Uen + Uee
# This function for approximate WF updating isn't being used
"""
def JastrowDiff(self,i,dr):
# approximates the difference in Jastrow factor for incrementing electron i by vector dr
da = np.sum(self.atom_disp[i]*dr,1)/self.atom_dist[i]
a_new = self.atom_dist[i] + da
Uen = np.sum(self.Cen*a_new/(1+self.Den*a_new))
# Compute electron distances from electron i (only further in the list - count each p air once)
Uee = 0
N_up = self.N_up
if i < N_up: # if this electron is spin up
e_same1 = self.e_dist[:i,i] # for earler electrons
e_same2 = self.e_dist[i,i+1:N_up] # for later electrons [i+1:N_up]
e_anti = self.e_dist[i,N_up:]
# update: r_new = r_old + (disp_old * dr_vec)/r_old
e_same_new1 = e_same1 + np.sum(self.e_disp[:i,i]*dr,1)/e_same1
e_same_new2 = e_same2 + np.sum(self.e_disp[i,i+1:N_up]*dr,1)/e_same2
e_anti_new = e_anti + np.sum(self.e_disp[i,N_up:]*dr,1)/e_anti
Uee += np.sum(self.Aee_same*e_same_new1/(1+self.Bee_same*e_same_new1))
Uee += np.sum(self.Aee_same*e_same_new2/(1+self.Bee_same*e_same_new2))
Uee += np.sum(self.Aee_anti*e_anti_new/(1+self.Bee_anti*e_anti_new))
else: # if this electron is spin down
# all the distances are to other down electrons
Uee += np.sum(self.Aee_same*self.e_dist[i,i+1:]/(1+self.Bee_same*self.e_dist[i,i+1:]))
Jdiff = Uee + Uen - self.Jastrow_i(i)
return Jdiff
"""
##########################################
# LOCAL ENERGY
def LocalEnergy(self, psi_at_rvec):
# KINETIC TERM
# We can compute all of the kinetic energy terms given the positions
# This might be hard to debug...
# Apparently LA.det will compute determinants of all matrices stacked along dimension 2 at once
# I am not sure this is any faster... but less for loops :)
useAnalytic = False
KE = 0
N = len(self.e_positions) #
if useAnalytic: # THIS WILL NOT WORK AT ALL until laplacian matrix and lap Jastrow are also updated
KE = 0 # need an indented line
"""
deriv_mat = SlaterMatrix(e_positions, self.ion_positions, self.psi_laplacian) # the slater matrix of the laplacians
allSlaterMats = np.repeat([SlaterMatrix(e_positions, self.ion_positions, self.psi_array)],N,axis=0) # copy this matrix N times along dimension 0
if np.version.version > '1.8':
for i in range(N):
# set the "diagonal rows" of this NxNxN matrix to be the second derivatives
allSlaterMats[i,i,:] = deriv_mat[i,:]
# First index: slice
# Second index: matrix row (which position)
# Third index: matrix column (which wavefunction)
localKineticEnergy = np.sum(LA.det(allSlaterMats)) / psi_at_rvec # add together the determinants of each derivative matrix
else:
dets = np.zeros(N)
for i in range(N):
# set the "diagonal rows" of this NxNxN matrix to be the second derivatives
allSlaterMats[i,i,:] = deriv_mat[i,:]
dets[i] = LA.det(allSlaterMats[i,:,:])
localKineticEnergy = np.sum(dets) / psi_at_rvec
"""
else:
#Central Finite difference method to get laplacian
# e_posxPlusH = e_positions.copy()
# e_posyPlusH = e_positions.copy()
# e_poszPlusH = e_positions.copy()
# e_posxMinusH = e_positions.copy()
# e_posyMinusH = e_positions.copy()
# e_poszMinusH = e_positions.copy()
'''
psi = self.QuickPsi
FDKineticEnergy = 0.0
for i in range(0,N):
#e_posxPlusH[i,0] += self.h
#e_posyPlusH[i,1] += self.h
#e_poszPlusH[i,2] += self.h
#e_posxMinusH[i,0] += -1.0*self.h
#e_posyMinusH[i,1] += -1.0*self.h
#e_poszMinusH[i,2] += -1.0*self.h
e_plusx = self.h * np.array([1,0,0])
e_plusy = self.h * np.array([0,1,0])
e_plusz = self.h * np.array([0,0,1])
e_minusx = -1.0*self.h * np.array([1,0,0])
e_minusy = -1.0*self.h * np.array([0,1,0])
e_minusz = -1.0*self.h * np.array([0,0,1])
# TODO This won't work until QuickPsi is working - maybe better to write DiffPsi for just differences instead
#print 'psiratio e+dx',i,psi(i,e_plusx)
psi_sum = psi(i,e_plusx) + psi(i,e_plusy) + psi(i,e_plusz) + psi(i,e_minusx) + psi(i,e_minusy) + psi(i,e_minusz)
#print 'psisum',psi_sum
FDKineticEnergy += KEprefactor * (-6.0 + psi_sum ) /(self.h*self.h)
localKineticEnergy = FDKineticEnergy
'''
FDKineticEnergy = 0.0
e_plusx = self.h * np.array([1,0,0])
e_plusy = self.h * np.array([0,1,0])
e_plusz = self.h * np.array([0,0,1])
e_minusx = -1.0*self.h * np.array([1,0,0])
e_minusy = -1.0*self.h * np.array([0,1,0])
e_minusz = -1.0*self.h * np.array([0,0,1])
for i in range(0,N):
psi_sum = 0.0
ratio = self.UpdatePosition(i,e_plusx)
psi_sum += ratio
#print 'ratio(FDhop)',ratio
ratio *= self.UpdatePosition(i,e_plusy-e_plusx)
psi_sum += ratio
#print 'ratio(FDhop)',ratio
ratio *= self.UpdatePosition(i,e_plusz-e_plusy)
psi_sum += ratio
#print 'ratio(FDhop)',ratio
ratio *= self.UpdatePosition(i,e_minusx-e_plusz)
psi_sum += ratio
#print 'ratio(FDhop)',ratio
ratio *= self.UpdatePosition(i,e_minusy-e_minusx)
psi_sum += ratio
#print 'ratio(FDhop)',ratio
ratio *= self.UpdatePosition(i,e_minusz-e_minusy)
psi_sum += ratio
#print 'ratio(FDhop)',ratio
ratio *= self.UpdatePosition(i,-e_minusz)
#print 'ratio(FDhop)',ratio
#print 'psi_sum',psi_sum
FDKineticEnergy += KEprefactor * (-6.0 + psi_sum ) /(self.h*self.h)
localKineticEnergy = FDKineticEnergy
# POTENTIAL TERM
V_ion = 0
V_e = 0
V_ion = -np.sum(self.ion_charges * np.sum(1.0/self.atom_dist,axis=0)) * q_e2k
V_e = np.sum(1.0/self.e_dist[self.e_dist!=0]) * q_e2k
"""
for i in range(N):
# electron-ion terms
V_ion += -np.sum(self.ion_charges/self.atom_dist) * q_e2k
# electron-electron terms
e_displacements = e_positions[i] - e_positions[i+1:] # only calculate distances to e- not already counted
e_distances = np.sqrt(np.sum(e_displacements*e_displacements,axis=1))
V_e += np.sum(1.0/e_distances) * q_e2k
"""
#print 'KE',localKineticEnergy
return V_ion + V_e + localKineticEnergy
# SLATER DETERMINANT - is this still necessary?
def SlaterMatrix(e_positions,fn_array):
# fn_array has the basis wavefunctions centered at the origin (shifted to the ion_position passed in as argument)
slater_matrix = np.zeros((len(e_positions),(len(e_positions))))
for j in range(0, len(fn_array)):
slater_matrix[j,:] = fn_array[j](e_positions) #build slater matrix
return slater_matrix
def SlaterDeterminant(slater_matrix):
Nfact = np.math.factorial(len(slater_matrix))
SD = (1/np.sqrt(Nfact)) * LA.det(slater_matrix)
return SD