-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_bert_on_race.py
773 lines (647 loc) · 33 KB
/
run_bert_on_race.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
# Authored by Wenlong Zhao using as reference BERT finetune runner examples which
# have the following copyright claim and license.
#
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""
import logging
import os
import argparse
import random
from tqdm import tqdm, trange
import csv
import glob
import json
import apex
import numpy as np
import torch
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from pytorch_pretrained_bert.tokenization import BertTokenizer
from pytorch_pretrained_bert.modeling import BertForMultipleChoice
from pytorch_pretrained_bert.optimization import BertAdam
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE
logging.basicConfig(filename = 'mylog.log',
format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
class RaceExample(object):
"""A single training/test example for the RACE dataset."""
'''
For RACE dataset:
race_id: data id
article: article
question: question
option_0/1/2/3: option_0/1/2/3
label: true answer
'''
def __init__(self,
race_id,
article,
question,
option_0,
option_1,
option_2,
option_3,
label = None):
self.race_id = race_id
self.article = article
self.question = question
self.options = [
option_0,
option_1,
option_2,
option_3,
]
self.label = label
def __str__(self):
return self.__repr__()
def __repr__(self):
l = [
"id: %s" % self.race_id,
"article: %s" % self.article,
"question: %s" % self.question,
"option_0: %s" % self.options[0],
"option_1: %s" % self.options[1],
"option_2: %s" % self.options[2],
"option_3: %s" % self.options[3],
]
if self.label is not None:
l.append("label: %s" % self.label)
return ", ".join(l)
## paths is a list containing all paths/directories
def read_race_examples(paths):
examples = []
for path in paths:
filenames = glob.glob(path+"/*txt")
for filename in filenames:
with open(filename, 'r', encoding='utf-8') as fpr:
data_raw = json.load(fpr)
article = data_raw['article']
## for each qn
for i in range(len(data_raw['answers'])):
truth = ord(data_raw['answers'][i]) - ord('A')
question = data_raw['questions'][i]
options = data_raw['options'][i]
examples.append(
RaceExample(
race_id = filename+'-'+str(i),
article = article,
question = question,
option_0 = options[0],
option_1 = options[1],
option_2 = options[2],
option_3 = options[3],
label = truth))
return examples
class InputFeatures(object):
def __init__(self,
example_id,
choices_features,
label
):
self.example_id = example_id
self.choices_features = [
{
'input_ids': input_ids,
'input_mask': input_mask,
'segment_ids': segment_ids
}
for _, input_ids, input_mask, segment_ids in choices_features
]
self.label = label
def convert_examples_to_features(examples, tokenizer, max_seq_length,
is_training):
"""Loads a data file into a list of `InputBatch`s."""
# RACE is a multiple choice task. To perform this task using Bert,
# we will use the formatting proposed in "Improving Language
# Understanding by Generative Pre-Training" and suggested by
# @jacobdevlin-google in this issue
# https://github.com/google-research/bert/issues/38.
#
# The input will be like:
# [CLS] Article [SEP] Question [SEP] Option [SEP]
# for each option
#
# The model will output a single value for each input. To get the
# final decision of the model, we will run a softmax over these 4
# outputs.
features = []
for example_index, example in enumerate(examples):
if example_index % 2000 == 0: print(example_index, "examples converted to features.")
article_tokens = tokenizer.tokenize(example.article)
question_tokens = tokenizer.tokenize(example.question)
choices_features = []
for option_index, option in enumerate(example.options):
option_tokens = tokenizer.tokenize(option)
truncated_article_length = min(len(article_tokens),
max_seq_length - 4 - len(question_tokens) - len(option_tokens))
tokens = ["[CLS]"] + article_tokens[:truncated_article_length] + \
["[SEP]"] + question_tokens + ["[SEP]"] + option_tokens + ["[SEP]"]
segment_ids = [0] * (truncated_article_length + 2) + \
[1] * (len(question_tokens) + len(option_tokens) + 2)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
padding = [0] * (max_seq_length - len(input_ids))
input_ids += padding
input_mask += padding
segment_ids += padding
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
# feature representation for four choices
choices_features.append((tokens, input_ids, input_mask, segment_ids))
label = example.label
## display some example
# if example_index < 1:
# logger.info("*** Example ***")
# logger.info(f"race_id: {example.race_id}")
# for choice_idx, (tokens, input_ids, input_mask, segment_ids) in enumerate(choices_features):
# logger.info(f"choice: {choice_idx}")
# logger.info(f"tokens: {' '.join(tokens)}")
# logger.info(f"input_ids: {' '.join(map(str, input_ids))}")
# logger.info(f"input_mask: {' '.join(map(str, input_mask))}")
# logger.info(f"segment_ids: {' '.join(map(str, segment_ids))}")
# if is_training:
# logger.info(f"label: {label}")
features.append(
InputFeatures(
example_id = example.race_id,
choices_features = choices_features,
label = label
)
)
print(len(examples), "examples all converted to features.")
return features
def accuracy(out, labels):
outputs = np.argmax(out, axis=1)
return np.sum(outputs == labels)
def select_field(features, field):
# field: tokens, input_ids, input_mask, segment_ids
return [
[
choice[field]
for choice in feature.choices_features
]
for feature in features
]
def warmup_linear(x, warmup=0.002):
if x < warmup:
return x/warmup
return 1.0 - x
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--data_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain the .csv files (or other data files) for the task.")
parser.add_argument("--bert_model", default=None, type=str, required=True,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
parser.add_argument("--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model checkpoints will be written.")
## Other parameters
parser.add_argument("--max_seq_length",
default=128,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--do_train",
default=False,
action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval",
default=False,
action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--do_lower_case",
default=False,
action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--train_batch_size",
default=32,
type=int,
help="Batch size for updates during training.")
parser.add_argument("--eval_batch_size",
default=8,
type=int,
help="Total batch size for eval.")
parser.add_argument("--learning_rate",
default=5e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--load_from_epoch",
default=None,
type=str,
help="The epoch of the model to load.")
parser.add_argument("--start_train_epoch",
default=0.0,
type=float,
help="Start with a specified training epoch.")
parser.add_argument("--num_train_epochs",
default=3.0,
type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--curr_global_step",
default=0.0,
type=float,
help="Start with a specified global step.")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--no_cuda",
default=False,
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument('--fp16',
default=False,
action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--loss_scale',
type=float, default=0,
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n")
args = parser.parse_args()
if not args.do_train and not args.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
if args.do_train and args.load_from_epoch == None and \
os.path.exists(args.output_dir) and os.listdir(args.output_dir):
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
os.makedirs(args.output_dir, exist_ok=True)
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps)
## Prepare device
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl')
logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
device, n_gpu, bool(args.local_rank != -1), args.fp16))
# Set random seed
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0: torch.cuda.manual_seed_all(args.seed)
## Prepare model
if args.load_from_epoch == None:
model = BertForMultipleChoice.from_pretrained(args.bert_model,
cache_dir=PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(args.local_rank),
num_choices=4)
else:
model_state_dict = torch.load(os.path.join( args.output_dir, "model_%sepoch" %
args.load_from_epoch ))
model = BertForMultipleChoice.from_pretrained(args.bert_model,
state_dict=model_state_dict,
num_choices=4)
if args.fp16:
model.half()
model.to(device)
if args.local_rank != -1:
try:
from apex.parallel import DistributedDataParallel as DDP
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
model = DDP(model)
elif n_gpu > 1:
model = torch.nn.DataParallel(model)
## Prepare tokenizer
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
''' Training '''
if args.do_train:
## Prepare training materials and log training information
## Also prepare evaluation materials. We evaluate on the dev set after every epoch
global_step = args.curr_global_step # Counts num of updates
train_dir = os.path.join(args.data_dir, 'train')
train_examples = read_race_examples([train_dir+'/high', train_dir+'/middle'])
train_features = convert_examples_to_features(
train_examples, tokenizer, args.max_seq_length, True)
dev_dir = os.path.join(args.data_dir, 'dev')
eval_examples = read_race_examples([dev_dir+'/high', dev_dir+'/middle'])
eval_features = convert_examples_to_features(
eval_examples, tokenizer, args.max_seq_length, True)
all_input_ids = torch.tensor(select_field(train_features, 'input_ids'), dtype=torch.long)
all_input_mask = torch.tensor(select_field(train_features, 'input_mask'), dtype=torch.long)
all_segment_ids = torch.tensor(select_field(train_features, 'segment_ids'), dtype=torch.long)
all_label = torch.tensor([f.label for f in train_features], dtype=torch.long)
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
if args.local_rank == -1:
train_sampler = RandomSampler(train_data)
else:
train_sampler = DistributedSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
all_input_ids = torch.tensor(select_field(eval_features, 'input_ids'), dtype=torch.long)
all_input_mask = torch.tensor(select_field(eval_features, 'input_mask'), dtype=torch.long)
all_segment_ids = torch.tensor(select_field(eval_features, 'segment_ids'), dtype=torch.long)
all_label = torch.tensor([f.label for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
## Prepare and log training information
num_train_updates = int(
len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps
) * args.num_train_epochs
if args.local_rank != -1:
t_total = num_train_updates // torch.distributed.get_world_size()
else: t_total = num_train_updates
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_examples))
logger.info(" Batch size = %d", args.train_batch_size*args.gradient_accumulation_steps)
logger.info(" Sum num updates over nodes = %d", num_train_updates)
## Prepare optimizer
param_optimizer = list(model.named_parameters())
# hack to remove pooler, which is not used
# thus it produce None grad that break apex
param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=t_total)
''' Training '''
for ep in range(int(args.start_train_epoch)-1, int(args.num_train_epochs)):
model.train()
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
logger.info("Training Epoch: {}/{}".format(ep+1, int(args.num_train_epochs)))
for step, batch in enumerate(train_dataloader):
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, label_ids = batch
loss = model(input_ids, segment_ids, input_mask, label_ids)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.fp16 and args.loss_scale != 1.0:
# rescale loss for fp16 training
# see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
loss = loss * args.loss_scale
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
tr_loss += loss.item()
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
if args.fp16:
optimizer.backward(loss)
else:
loss.backward()
if (step + 1) % args.gradient_accumulation_steps == 0:
# modify learning rate with special warm up BERT uses
lr_this_step = args.learning_rate * warmup_linear(
global_step/t_total, args.warmup_proportion
)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
optimizer.step()
optimizer.zero_grad()
global_step += 1
## log the process
if global_step%100 == 0:
logger.info("Training loss: {}, global step: {}".format(
tr_loss/nb_tr_steps, global_step))
''' Save a trained model by the end of each epoch '''
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
torch.save(model_to_save.state_dict(), os.path.join(args.output_dir, "model_%sepoch"%str(ep+1)) )
''' Evaluate on dev set at the end of the epoch '''
logger.info("***** Running evaluation: Dev *****")
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
model.eval()
eval_loss, eval_accuracy = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
for step, batch in enumerate(eval_dataloader):
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, label_ids = batch
with torch.no_grad():
tmp_eval_loss = model(input_ids, segment_ids, input_mask, label_ids)
logits = model(input_ids, segment_ids, input_mask)
logits = logits.detach().cpu().numpy()
label_ids = label_ids.to('cpu').numpy()
tmp_eval_accuracy = accuracy(logits, label_ids)
eval_loss += tmp_eval_loss.mean().item()
eval_accuracy += tmp_eval_accuracy
nb_eval_examples += input_ids.size(0)
nb_eval_steps += 1
eval_loss = eval_loss / nb_eval_steps
eval_accuracy = eval_accuracy / nb_eval_examples
result = {'dev_eval_loss': eval_loss,
'dev_eval_accuracy': eval_accuracy,
'global_step': global_step,
'training loss': tr_loss/nb_tr_steps}
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
with open(output_eval_file, "a+") as writer:
logger.info("***** Dev results *****")
writer.write("Epoch: %s\n" % str(ep+1))
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
writer.write("\n")
''' Testing '''
if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
if not args.do_train:
## Load a trained model that you have fine-tuned
## use this part if you want to load the trained model
model_state_dict = torch.load(os.path.join( args.output_dir, "model_%sepoch" % args.num_train_epochs ))
model = BertForMultipleChoice.from_pretrained(args.bert_model,
state_dict=model_state_dict,
num_choices=4)
model.to(device)
test_dir = os.path.join(args.data_dir, 'test')
test_high = [test_dir + '/high']
test_middle = [test_dir + '/middle']
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
## test high
eval_examples = read_race_examples(test_high)
eval_features = convert_examples_to_features(
eval_examples, tokenizer, args.max_seq_length, True)
logger.info("***** Running evaluation: test high *****")
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
all_input_ids = torch.tensor(select_field(eval_features, 'input_ids'), dtype=torch.long)
all_input_mask = torch.tensor(select_field(eval_features, 'input_mask'), dtype=torch.long)
all_segment_ids = torch.tensor(select_field(eval_features, 'segment_ids'), dtype=torch.long)
all_label = torch.tensor([f.label for f in eval_features], dtype=torch.long)
all_ids = torch.tensor([int(os.path.basename(f.example_id)[:-6]) for f in eval_features], dtype=torch.int) # "RACE/test/high/xxxx.txt-3"
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label, all_ids)
# Run prediction for full data
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
model.eval()
analyze_high_file = open("analyze_high.txt","a+")
n_high_sample = 0
high_eval_loss, high_eval_accuracy = 0, 0
high_nb_eval_steps, high_nb_eval_examples = 0, 0
for step, batch in enumerate(eval_dataloader):
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, label_ids, ids = batch
with torch.no_grad():
tmp_eval_loss = model(input_ids, segment_ids, input_mask, label_ids)
logits = model(input_ids, segment_ids, input_mask)
logits = logits.detach().cpu().numpy()
label_ids = label_ids.to('cpu').numpy()
tmp_eval_accuracy = accuracy(logits, label_ids)
high_eval_loss += tmp_eval_loss.mean().item()
high_eval_accuracy += tmp_eval_accuracy
high_nb_eval_examples += input_ids.size(0)
high_nb_eval_steps += 1
# print cases of incorrect predictions to file
ids = ids.to('cpu').numpy()
input_ids = input_ids.to('cpu').numpy()
outputs = np.argmax(logits, axis=1)
correctness = outputs == label_ids
for i in range(len(label_ids)):
#if correctness[i] == 1:
if n_high_sample < 300:
analyze_high_file.write("race_id:"+str(ids[i])+"\n\n")
analyze_high_file.write(
'answer: ' + str(label_ids[i]) +
'\nprediction: ' + str(outputs[i]) + "\n\n")
for choice in range(4):
analyze_high_file.write(
"choice: "+str(choice)+"\n")
analyze_high_file.write( ' '.join(
tokenizer.convert_ids_to_tokens(
input_ids[i][choice]))+'\n\n')
n_high_sample = n_high_sample + 1
analyze_high_file.close()
eval_loss = high_eval_loss / high_nb_eval_steps
eval_accuracy = high_eval_accuracy / high_nb_eval_examples
result = {'high_eval_loss': eval_loss,
'high_eval_accuracy': eval_accuracy}
with open(output_eval_file, "a+") as writer:
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
## test middle
eval_examples = read_race_examples(test_middle)
eval_features = convert_examples_to_features(
eval_examples, tokenizer, args.max_seq_length, True)
logger.info("***** Running evaluation: test middle *****")
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
all_input_ids = torch.tensor(select_field(eval_features, 'input_ids'), dtype=torch.long)
all_input_mask = torch.tensor(select_field(eval_features, 'input_mask'), dtype=torch.long)
all_segment_ids = torch.tensor(select_field(eval_features, 'segment_ids'), dtype=torch.long)
all_label = torch.tensor([f.label for f in eval_features], dtype=torch.long)
all_ids = torch.tensor([int(os.path.basename(f.example_id)[:-6]) for f in eval_features], dtype = torch.int)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label, all_ids)
# Run prediction for full data
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
model.eval()
analyze_middle_file = open("analyze_middle.txt","a+")
n_middle_sample = 0
middle_eval_loss, middle_eval_accuracy = 0, 0
middle_nb_eval_steps, middle_nb_eval_examples = 0, 0
for step, batch in enumerate(eval_dataloader):
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, label_ids, ids = batch
with torch.no_grad():
tmp_eval_loss = model(input_ids, segment_ids, input_mask, label_ids)
logits = model(input_ids, segment_ids, input_mask)
logits = logits.detach().cpu().numpy()
label_ids = label_ids.to('cpu').numpy()
tmp_eval_accuracy = accuracy(logits, label_ids)
middle_eval_loss += tmp_eval_loss.mean().item()
middle_eval_accuracy += tmp_eval_accuracy
middle_nb_eval_examples += input_ids.size(0)
middle_nb_eval_steps += 1
# print cases of incorrect predictions to file
ids = ids.to('cpu').numpy()
input_ids = input_ids.to('cpu').numpy()
outputs = np.argmax(logits, axis=1)
correctness = outputs == label_ids
for i in range(len(label_ids)):
#if correctness[i] == 1:
if n_middle_sample < 300:
analyze_middle_file.write("race_id:"+str(ids[i])+"\n\n")
analyze_middle_file.write(
'answer: ' + str(label_ids[i]) +
'\nprediction: ' + str(outputs[i]) + "\n\n")
for choice in range(4):
analyze_middle_file.write(
"choice: "+str(choice)+"\n")
analyze_middle_file.write( ' '.join(
tokenizer.convert_ids_to_tokens(
input_ids[i][choice]))+"\n\n")
n_middle_sample = n_middle_sample + 1
analyze_middle_file.close()
eval_loss = middle_eval_loss / middle_nb_eval_steps
eval_accuracy = middle_eval_accuracy / middle_nb_eval_examples
result = {'middle_eval_loss': eval_loss,
'middle_eval_accuracy': eval_accuracy}
with open(output_eval_file, "a+") as writer:
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
## all test
eval_loss = (middle_eval_loss + high_eval_loss) / (middle_nb_eval_steps + high_nb_eval_steps)
eval_accuracy = (middle_eval_accuracy + high_eval_accuracy) / (middle_nb_eval_examples + high_nb_eval_examples)
result = {'overall_eval_loss': eval_loss,
'overall_eval_accuracy': eval_accuracy}
with open(output_eval_file, "a+") as writer:
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
if __name__ == "__main__":
main()