forked from Yuliang-Liu/Curve-Text-Detector
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo.py
168 lines (130 loc) · 5.81 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import numpy as np
import cv2
import os, glob
import _init_paths
import caffe
from fast_rcnn.config import cfg, cfg_from_file, cfg_from_list
from fast_rcnn.bbox_transform import clip_boxes, bbox_transform_inv, info_syn_transform_inv_h, info_syn_transform_inv_w
from fast_rcnn.nms_wrapper import nms, pnms
from utils.blob import im_list_to_blob
from shapely.geometry import *
caffe.set_mode_gpu()
caffe.set_device(0)
net_prototxt = "../models/ctd/test_ctd_tloc.prototxt"
model = "../output/ctd_tloc.caffemodel"
cofig_file = "../experiments/cfgs/rfcn_ctd.yml"
images = glob.glob("../images/demo/*.jpg")
def _get_image_blob(im):
im_orig = im.astype(np.float32, copy=True)
im_orig -= cfg.PIXEL_MEANS
im_shape = im_orig.shape
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
processed_ims = []
im_scale_factors = []
for target_size in cfg.TEST.SCALES:
im_scale = float(target_size) / float(im_size_min)
# Prevent the biggest axis from being more than MAX_SIZE
if np.round(im_scale * im_size_max) > cfg.TEST.MAX_SIZE:
im_scale = float(cfg.TEST.MAX_SIZE) / float(im_size_max)
im = cv2.resize(im_orig, None, None, fx=im_scale, fy=im_scale,
interpolation=cv2.INTER_LINEAR)
im_scale_factors.append(im_scale)
processed_ims.append(im)
# Create a blob to hold the input images
blob = im_list_to_blob(processed_ims)
return blob, np.array(im_scale_factors)
def _get_blobs(im, rois):
"""Convert an image and RoIs within that image into network inputs."""
blobs = {'data' : None, 'rois' : None}
blobs['data'], im_scale_factors = _get_image_blob(im)
return blobs, im_scale_factors
def im_detect(net, im, boxes=None):
blobs, im_scales = _get_blobs(im, boxes)
im_blob = blobs['data']
blobs['im_info'] = np.array(
[[im_blob.shape[2], im_blob.shape[3], im_scales[0]]],
dtype=np.float32)
# reshape network inputs
net.blobs['data'].reshape(*(blobs['data'].shape))
net.blobs['im_info'].reshape(*(blobs['im_info'].shape))
# do forward
forward_kwargs = {'data': blobs['data'].astype(np.float32, copy=False)}
forward_kwargs['im_info'] = blobs['im_info'].astype(np.float32, copy=False)
blobs_out = net.forward(**forward_kwargs)
rois = net.blobs['rois'].data.copy()
boxes = rois[:, 1:5] / im_scales[0]
scores = blobs_out['cls_prob']
box_deltas = blobs_out['bbox_pred']
pred_boxes = bbox_transform_inv(boxes, box_deltas)
pred_boxes = clip_boxes(pred_boxes, im.shape)
############################################### curve
info_deltas_h = blobs_out['info_pred_h']
pred_infos_h = info_syn_transform_inv_h(boxes, info_deltas_h)
info_deltas_w = blobs_out['info_pred_w']
pred_infos_w = info_syn_transform_inv_w(boxes, info_deltas_w)
assert len(boxes) == len(pred_infos_h) == len(pred_infos_w)
###############################################
return scores, pred_boxes, pred_infos_h, pred_infos_w
def vis(im, dets, thresh=0.3):
for i in xrange(np.minimum(100, dets.shape[0])):
bbox = dets[i, :4]
score = dets[i, 4]
info_bbox = dets[i, 5:33] # syn
pts = [info_bbox[i] for i in xrange(28)]
assert(len(pts) == 28), 'wrong length.'
if score > thresh:
for p in xrange(0,28,2):
cv2.line(im,(int(bbox[0]) + int(pts[p%28]), int(bbox[1]) + int(pts[(p+1)%28])),
(int(bbox[0]) + int(pts[(p+2)%28]), int(bbox[1]) + int(pts[(p+3)%28])),(0,0,255),2)
im = cv2.resize(im, (1280, 720)) # visualization
cv2.imshow('Dectecting results syn.', im)
cv2.waitKey(0)
def nps(dets, cdets):
delete_inds = []
for i in xrange(cdets.shape[0]):
bbox = cdets[i, :4]
score = cdets[i, 4]
info_bbox = cdets[i, 5:33]
pts = [(int(bbox[0]) + info_bbox[j], int(bbox[1]) + info_bbox[j+1]) for j in xrange(0,28,2)]
ploygon_test = Polygon(pts)
if not ploygon_test.is_valid:
print('non-ploygon detected')
delete_inds.append(i)
if int(ploygon_test.area) < 10:
print('neg-ploygon')
delete_inds.append(i)
dets = np.delete(dets, delete_inds, 0)
cdets = np.delete(cdets, delete_inds, 0)
return dets, cdets
if __name__ == "__main__":
cfg_from_file(cofig_file)
net = caffe.Net(net_prototxt, model, caffe.TEST)
for image in images:
im = cv2.imread(image)
scores, boxes, infos_h, infos_w = im_detect(net, im, None)
assert(scores.shape[0] == infos_h.shape[0] == infos_w.shape[0]) , 'length mismatch'
inds = np.where(scores[:, 1] > 0.5)[0]
cls_scores = scores[inds, 1]
cls_boxes = boxes[inds, 4:8]
## curve
cls_infos_h = infos_h[inds, :14]
cls_infos_w = infos_w[inds, :14]
cls_dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])) \
.astype(np.float32, copy=False)
# stack h and w pred.
cls_infos = np.zeros((cls_infos_h.shape[0], 28))
wh_stack_temp = np.dstack((cls_infos_w, cls_infos_h))
assert(wh_stack_temp.shape[0] == cls_infos.shape[0]), 'wh stack length mismatch.'
for ixstack, row_cls_infos in enumerate(cls_infos):
cls_infos[ixstack] = wh_stack_temp[ixstack].ravel()
cls_dets_withInfo = np.hstack((cls_boxes, cls_scores[:, np.newaxis], cls_infos)) \
.astype(np.float32, copy=False)
cls_dets, cls_dets_withInfo = nps(cls_dets, cls_dets_withInfo)
if cfg.TEST.USE_PNMS:
keep = pnms(cls_dets_withInfo, cfg.TEST.PNMS)
else:
keep = nms(cls_dets, cfg.TEST.NMS)
cls_dets = cls_dets[keep, :]
cls_dets_withInfo = cls_dets_withInfo[keep, :]
vis(im, cls_dets_withInfo, 0.1)